

AFRL-IF-RS-TR-2005-67

Final Technical Report
March 2005

DYNAMIC POLICY EVALUATION FOR
CONTAINING NETWORK ATTACKS (DEFCN)

University of Southern California at Marina Del Rey

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K293

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-67 has been reviewed and is approved for publication

APPROVED: /s/

JON B. VALENTE
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

 Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2005

3. REPORT TYPE AND DATES COVERED
Final Jul 00 – Dec 03

4. TITLE AND SUBTITLE
DYNAMIC POLICY EVALUATION FOR CONTAINING NETWORK ATTACKS
(DEFCN)

6. AUTHOR(S)
B. Clifford Neuman,
Dongho Kim and
Tatyana Ryutov

5. FUNDING NUMBERS
C - F30602-00-2-0595
PE - 62301E
PR - K293
TA - 33
WU - A1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California at Marina del Rey
Information Sciences Institute
4676 Admiralty Way
Suite 1001
Marina del Rey California 90292

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-67

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Jon B. Valente/IFGA/(315) 330-1559/ Jon.Valente@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The DARPA funded DEFCN project at USC's Information Sciences Institute has developed an access control
framework that is sensitive to network threat conditions. Project members developed the Generic Authorization and
Access control Application Programming Interface (GAA-API), a middle-ware API for generic authorization and access-
control and have integrated this framework with intrusion detection and response systems. Access policies evaluated by
the GAA-API can be conditioned upon network threat conditions communicated by intrusion detection systems, and
they also adapt to changes in information sharing policies prompted by the formation of dynamic coalitions. The GAA-
API allows the generation of audit records at the control points in applications. The level of detail of the audit records
generated is dependent upon the network threat condition and on authentication characteristics of a request.

15. NUMBER OF PAGES
84

14. SUBJECT TERMS
Dynamic Policy Management, Authorization, Access Control, Intrusion Response,
Dynamic Coalitions 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1. Introduction... 1

2. Product and Development Activities .. 2

2.1. GAA-API (Generic Authorization & Access-control Application Programming
Interface) .. 2
2.2. GAA-API integrated Apache web server... 2
2.3. GAA-API integrated SSH (Secure Shell server) .. 3
2.4. GAA-API integrated IPSec (FreeSWAN) ... 3
2.5. GAA-API integrated SOCKS5 (proxy server).. 4
2.6. Trust Builder integrated GAA-API ... 4

3. Publications in Technical Journals ... 5

4. Papers Presented at Meetings, Conferences, Seminars, etc. ... 5

5. Personnel.. 6

6. New Discoveries, inventions, or patent disclosures.. 6

APPENDIX Publications and Papers Presented at Meetings and Conferences 7

Appendix A: Integrated Access Control and Intrusion Detection for Web Servers....................... 8

Appendix B: Integrated Access Control and Intrusion Detection for Web Servers...................... 19

Appendix C: Dynamic Authorization and Intrusion Response in Distributed Systems................ 27

Appendix D: The Specification and Enforcement of Advanced Security Policies....................... 39

Appendix E: The Set and Function Approach to Modeling Authorization in Distributed............ 50

Appendix F: Representation and Evaluation of Security Policies for Distributed System............ 69

 i

1. Introduction

The DARPA funded DEFCN project at USC's Information Sciences Institute has developed an
access control framework that is sensitive to network threat conditions. Project members
developed the Generic Authorization and Access control Application Programming Interface
(GAA-API), a middle-ware API for generic authorization and access-control, and have
integrated this framework with intrusion detection and response systems. Access policies
evaluated by the GAA-API can be conditioned upon network threat conditions communicated
by intrusion detection systems, and they also adapt to changes in information sharing policies
prompted by the formation of dynamic coalitions. The GAA-API allows the generation of audit
records at the control points in applications. The level of detail of the audit records generated is
dependent upon the network threat condition and on the authentication characteristics of a
request.

Some security countermeasures are too costly to apply all the time. A system's security and
access control mechanisms must adapt to varying threat conditions in order to adequately
respond to attacks while imposing minimal hindrance to legitimate users. For example, when a
threat is detected, servers should modify logging behavior to record additional detail and
forward the detail to a central server for analysis. In addition, one might want to adapt policies
in a crisis situation to allow greater sharing of data, but in a controlled manner. This way,
coalition members from different agencies or governments can share data more readily, once a
coalition is formed, without having to "turn off" security as might otherwise happen if sharing
was needed and turning off security was the only way to allow it. Other countermeasures, like
market-based methods for resource allocation, should be enabled when needed to thwart denial
of service attacks but disabled during normal operation.

Higher level software must adapt its behavior in response to a perceived threat in order to
enable fine-grained response to an attack scenario, while ensuring that responses are
comprehensive enough to protect against attacks that originate from multiple points. This
support must be placed in servers, at the application level, because often only the servers
themselves have knowledge of the operations that are requested or of the objects to be
manipulated by the request. ISI's research focused on the application level response to attacks,
and provided a mechanism through which application responses were coordinated on a
system-wide basis.

For a system-wide response to occur across servers, the servers must implement an access
control system that can adapt to threat conditions. Because this kind of adaptation is not of
particular concern to application developers, who are rightfully more concerned with the
routine operation of their servers, these features were embedded within an access control
system that provided benefit to the application developer.

The technical part of this report is structured as follows. The introduction provided a high-level
overview of the goals and accomplishment of the DEFCN effort. Section 2 describes the
products and development activities that were performed under the project. Section 3 describes

 1

the activities of the effort by quarter. Brief reports of the meetings and conferences attended are
included chronologically in section 4.

Greater details regarding the results of the DEFCN effort are found in the publications that are
listed in sections 5 and 6 and appear in their entirety in the appendix. In particular, the paper
"Dynamic Authorization and Intrusion Response in Distributed Systems," from the Proceedings
of the 3rd DARPA Information Survivability Conference and Exposition, provides a good
overview of the results of the DEFCN effort.

Section 7 lists the personel associated with the project and degrees awarded to students whose
work was funded under the DEFCN effort.

2. Product and Development Activities

Greater detail about the development activities described in this section may be found in section
3, and in the papers listed in sections 5 and 6, with copies of the papers in appendix A. The
latest code distributions resulting from the DEFCN effort may be dowloaded from:

 http://gost.isi.edu/projects/defcn/ or http://defcn.sysproject.info

The software developed and extended by the Global Operating Systems Technologies (GOST)
project includes the following:

2.1. GAA-API (Generic Authorization & Access-control Application Programming Interface)

Applications invoke GAA-API functions to check authorization against an authorization model.
The API functions obtain policies from local files, distributed authorization servers, and from
credentials provided by the user. The functions combine local and distributed authorization
information under a single API based on the requirements of the application and applicable
policies, and request credentials if necessary.

A module is provided to support a simple policy language called Extended Access Control Lists
(EACL) that is designed to describe user-level authorization policy. The GAA-API provides a
general-purpose execution environment in which EACLs are evaluated. EACL is one of the
possible policy languages supported by the GAA-API. The underlying architecture of the GAA-
API allows different policy languages to co-exist in one execution environment.

2.2. GAA-API integrated Apache web server

The GAA-API was integrated with Apache web server versions 1.3 and 2.0.4. Integration with
the GAA-API provided the following additional capabilities beyond those provided by the
Apache without GAA-API integration:

 2

1. Flexible, adaptive and fine grained access control - Apache supports only limited
identity and host based policies that deny/allow access to protected resources. The
policies supported by the GAA-API allow security administrators to control not only
which users or groups and from which locations are allowed access, but also support
other conditions, including time, location, system load, and system threat level.
Furthermore, the GAA-Apache supports adaptive security policies, which respond to
attacks by modifying security measures automatically. For example, policies can be
specified that enable restricting access to local users only or requesting extra credentials.

2. Fine grained audit and notification capabilities - Besides making decisions of whether

a request is accepted or rejected, the GAA-API libraries provide routines that can
execute certain actions, such as logging information, notifying the administrator, etc.
Furthermore, the GAA-API supports fine-tuning of the notification and audit services
that helps to increase the quality and reduce the volume of generated data and alerts.

3. Application level intrusion/misuse detection and response capability - Apache access

control mechanisms were not designed to aid the detection of threats or to adjust their
behavior based on perceived threat conditions. The GAA-Apache supports for policies
that assist in detecting and responding to application level intrusions and adapt to
perceived system threat conditions. For example, the system can reject or modify the
requests that violate security policy (e.g., request encapsulates dangerous characters).

4. Flexible policy composition framework that relates separately defined policies - The

GAA-Apache supports system wide and local policies. The composed policy is
constructed by merging the system wide and local policies. This separation of policies
allows for flexible and efficient policy management and also enables coordination of
policy across multiple applications.

2.3. GAA-API integrated SSH (Secure Shell server)

The GAA-API was integrated with the SSH server. The GAA-API reads policy information
from the target users ".ssh" directory and applies those policies to determine whether remote
login is allowed to a particular account. The changes made to integrate the GAA-API with
SSH has been included in the GAA reference implementation illustrative application on how to
use the GAA-API from an application.

2.4. GAA-API integrated IPSec (FreeSWAN)

The GAA-API was integrated with the FreeS/WAN IPsec version 1.91. Integration with the
GAA-API provided the following additional capabilities beyond those provided by the IPsec
without GAA-API integration:

 3

• replaced hard coded parameter selection for the Security Association (SA) negotiation
with fine-grained controls over the parameters;

• added time and location based controls;

• added connection duration controls.

It also enables the GAA-IPsec to support dynamic policies that adapt to current system threat
condition. For example, policies can be specified to:

• require stronger authentication and/or encryption methods (SA parameters) when system
is under attack;

• deny connections to less trusted IP addresses;

• control the number and duration of the IPsec connection when the system is under

ongoing or suspected DoS attack.

2.5. GAA-API integrated SOCKS5 (proxy server)

The GAA-API was integrated with the Socks5 version 1.0r11 Integration with the GAA-API
provided the following additional capability beyond the one provided by the application
without GAA-API integration: checking for source and destination IP addresses and other
conditions such as time, system threat level, secondary proxy IP adddress, content of URL, and
authentication information. The GAA-API can also inspect the request frequency to limit the
consumption of each user and protect the system from potential DoS attacks. In addition, the
GAA-API can also be used to perform dynamic logging, notification, and the coodination
between other applications such as firewall. These changes enable coordination of policy with
other applications. It also enables the SOCKS 5 to support dynamic policies that adapt to
system threat level. For example, policies can be specified to disable or block outgoing traffic as
the system threat level escalates.

2.6. Trust Builder integrated GAA-API

The GAA-API was integrated with the TrustBuilder system. The GAA-API neither supports
trust negotiation nor protection of sensitive policies. The TrustBuilder regulates when and how
sensitive information is disclosed to other parties; however, the system lacks fine-grained
adaptive policies. This combination extends the capabilities of each system. In particular, the
GAA-API/TrustBuilder integration allows us to do the following:

• detect and thwart certain attacks on electronic business transactions (e.g., some types of
DoS and sensitive information leaks);

 4

• support cost effective trust negotiation, such that TrustBuilder is invoked only when
negotiation is required by access control policies;

• dynamically adapt information disclosure and resource access policies according

suspicion level and general system threat level.

3. Publications in Technical Journals

• "Integrated Access Control and Intrusion Detection for Web Servers" Tatyana Ryutov,
Clifford Neuman, Dongho Kim and Li Zhou. IEEE Transactions on Parallel and
Distributed Systems, Vol. 14, No. 9, September 2003.

4. Papers Presented at Meetings, Conferences, Seminars, etc.

• "Integrated Access Control and Intrusion Detection for Web Servers," Tatyana Ryutov,
Clifford Neuman, Dongho Kim and Li Zhou. In Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDCS 2003), Providence, Rhode Island,
May 2003.

• "Dynamic Authorization and Intrusion Response in Distributed Systems," Tatyana

Ryutov, Clifford Neuman, and Dongho Kim. In Proceedings of the 3rd DARPA
Information Survivability Conference and Exposition (DISCEX III), Washington, D.C.
April 22-24, 2003.

• "The Specification and Enforcement of Advanced Security Policies," Tatyana Ryutov,

Clifford Neuman. In Proceedings of the Conference on Policies for Distributed Systems
and Networks (POLICY 2002), June 5-7, 2002, in Monterey, California.

• "The Set and Function Approach to Modeling Authorization in Distributed Systems,"

Tatyana Ryutov, Clifford Neuman. In Proceedings of the Workshop on Mathematical
Methods and Models and Architecture for Computer Networks Security, May 2001, St.
Petersburg, Russia.

• "Representation and Evaluation of Security Policies for Distributed System Services,"

Tatyana Ryutov, Clifford Neuman. In Proceedings of the DARPA Information
Survivability Conference & Exposition, January 2000. Hilton Head, South Carolina.

 5

5. Personnel

• B. Clifford Neuman - Senior Research Scientist and Associate Division Director

• Ho Suk Chung - Graduate Research Assistant

• Dongho Kim - Computer Scientist
 Ph.D. in Computer Science, University of Southern California, 2001
 Thesis: Reconstructing Interconnections on Disconnected Mobile Hosts

• Tatyana Ryutov - Computer Scientist
 Ph.D. in Computer Science, University of Southern California,
 August 2002
 Thesis: Control-driven Authorization Model for Distributed
 System Services

• Li Zhou - Graduate Research Assistant

• Arnold Diaz - Project Support

6. New Discoveries, inventions, or patent disclosures

No patents were filed for as the result of the research in the DEFCN effort. In the interest of
promoting the dissemination of the important ideas resulting from this research, results were
published and such prior publication precludes the patenting of such results.

 6

APPENDIX
Publications and Papers Presented at Meetings and Conferences

For more information on the results of the DEFCN effort, refer to the publications listed below.
Note that the paper entitled "Dynamic Authorization and Intrusion Response in Distributed
Systems," from the Proceedings of the 3rd DARPA Information Survivability Conference and
Exposition, provides a good overview. Publications in their entirety will follow this page.

• "Integrated Access Control and Intrusion Detection for Web Servers" Tatyana Ryutov,
Clifford Neuman, Dongho Kim and Li Zhou. IEEE Transactions on Parallel and
Distributed Systems, Vol. 14, No. 9, September 2003.

• "Integrated Access Control and Intrusion Detection for Web Servers," Tatyana Ryutov,

Clifford Neuman, Dongho Kim and Li Zhou. In Proceedings of the 23rd International
Conference on Distributed Computing Systems (ICDCS 2003), Providence, Rhode Island,
May 2003.

• "Dynamic Authorization and Intrusion Response in Distributed Systems," Tatyana

Ryutov, Clifford Neuman, and Dongho Kim. In Proceedings of the 3rd DARPA
Information Survivability Conference and Exposition (DISCEX III), Washington, D.C.
April 22-24, 2003.

• "The Specification and Enforcement of Advanced Security Policies," Tatyana Ryutov,

Clifford Neuman. In Proceedings of the Conference on Policies for Distributed Systems
and Networks (POLICY 2002), June 5-7, 2002, in Monterey, California.

• "The Set and Function Approach to Modeling Authorization in Distributed Systems,"

Tatyana Ryutov, Clifford Neuman. In Proceedings of the Workshop on Mathematical
Methods and Models and Architecture for Computer Networks Security, May 2001, St.
Petersburg, Russia.

• "Representation and Evaluation of Security Policies for Distributed System Services,"

Tatyana Ryutov, Clifford Neuman. In Proceedings of the DARPA Information
Survivability Conference & Exposition, January 2000. Hilton Head, South Carolina.

 7

Integrated Access Control and
Intrusion Detection for Web Servers

Tatyana Ryutov, Clifford Neuman, Senior Member, IEEE, Dongho Kim, Member, IEEE, and Li Zhou

Abstract—Current intrusion detection systems work in isolation from access control for the application the systems aim to protect. The

lack of coordination and interoperation between these components prevents detecting and responding to ongoing attacks in real-time

before they cause damage. To address this, we apply dynamic authorization techniques to support fine-grained access control and

application level intrusion detection and response capabilities. This paper describes our experience with integration of the Generic

Authorization and Access Control API (GAA-API) to provide dynamic intrusion detection and response for the Apache Web server. The

GAA-API is a generic interface which may be used to enable such dynamic authorization and intrusion response capabilities for many

applications.

Index Terms—Access control, authorization, security policy, intrusion detection, Apache Web server.

�

1 INTRODUCTION AND MOTIVATION

WEBservers continue to be attractive targets for attackers
seeking to steal or destroy data, deny user access, or

embarrass organizations by changingWeb site contents. The
Web servers are an easy target for outside intruders because
the servers must be publicly available around the clock. In
order to penetrate their targets, attackers may exploit well-
knownservicevulnerabilities.AWebserver canbe subverted
through vulnerable CGI scripts, which may be exploited by
metacharacters or buffer overflow attacks. These vulnerabil-
ities may be related to the default installation of the server, or
may be introduced by careless writing of custom scripts.

Web servers are also popular targets for Denial of Service
(DoS) attacks. An attacker sends a stream of connection
requests to a server in an attempt to crash or slow down the
service. Launching a DoS attack against a Web server can be
accomplished in many ways, including ill-formed HTTP
requests (e.g., a large number ofHTTPheaders).As the server
tries to process such requests, it slows down and becomes
unable to process other requests. In addition, Web servers
exhibit susceptibility to password guessing attacks.

To address these risks, Web servers require increased
security protection. Effective system security starts with
security policies that are supported by an access control
mechanism. The access control policy to be enforced should
depend on the current state of the system (e.g., time of day,
system load, or system threat level). More restrictive
organizational policies may be enforced after hours when
the system is busy or if suspicious activity has been
detected.

Unfortunately, many Web servers (e.g., Apache and IIS)
support only limited identity and host-based policies that
deny/allow access to protected resources. The policies are
checked only when an access request is received to
determine whether the request should be permitted or

forbidden. These policies do not support observing and
reporting suspicious activity (e.g., embedding hexadecimal
characters in a query) and modifying system protection as a
result.

Thus, the security policies must not only specify
legitimate user privileges, but also aid in the detection of
threats and adapt their behavior based on perceived system
threat conditions. Even a single instance of a request for a
vulnerable CGI script or malformed request should be
reported immediately and countermeasures should be
applied. Such countermeasures may include:

. generating audit records;

. notifying network servers that are monitoring
security relevant events in the system;

. tightening local policies (e.g., restricting access to
local users only or requesting extra credentials); and

. modifying overall system protection. Examples
include terminating the session, logging the user
off the system, disabling local account or blocking
connections from particular parts of the network,
or stopping selected services (e.g., disable ssh
connections).

These actions would be followed by an alert to the
security administrator, who can then assess the situation
and take the appropriate corrective actions. This step is
important since an automated response to attacks can be
used by an intruder in order to stage a DoS attack (the
intruder could have impersonated a host or a user).

Traditional access control mechanisms were not de-
signed to aid the detection of threats or to adjust their
behavior based on perceived threat conditions. Common
countermeasures to Web server threats depend on separate
components like firewalls, Intrusion Detection Systems
(IDSs), and code integrity checkers. While these compo-
nents are useful in detecting some kinds of attacks, they do
not fully address a Web server’s security needs. For
example, firewalls can deny access to unauthorized net-
work connections; however, they cannot stop attacks
coming in via authorized ports. In the general case, IDSs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003 1

. The authors are with USC Information Sciences Institute, 4676 Admiralty
Way, Suite 1001, Marina del Rey, CA 90292.
E-mail: {tryutov, bcn, dongho, zhou}@isi.edu.

Manuscript received 24 Feb. 2003; accepted 15 May 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118642.

1045-9219/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society
8

goodelle
Text Box
Appendix A:

provide only incomplete coverage, leaving sophisticated
attacks undetected. Other disadvantages include a large
number of false positives and the inability to preemptively
respond to attacks. Integrity checkers can detect unauthor-
ized changes to files on a Web site, but only after the
damage has been done.

Motivated by the multitude of Web server vulnerabilities
and generally unsatisfactory server protection, we propose
an integrated approach to Web server security—the Generic
Authorization and Access-control API (GAA-API) that
supports fine-grained access control and application level
intrusion detection and response.

The API evaluates HTTP requests and determines
whether the requests are allowed and if they represent a
threat according to a policy. Our approach differs from
other work done in this area by supporting access control
policies extended with the capability to identify intrusions
and respond to the intrusions in real-time. The policy
enforcement takes three phases:

1. Before the requested operation (e.g., display an
HTML file or run a CGI program) starts—to decide
whether this operation is authorized.

2. During the execution of the authorized operation—to
detect malicious behavior in real-time (e.g., a process
consumes excessive system resources).

3. After the operation is completed—to activate post
execution actions, such as logging and notification
whether the operation succeeds or fails (e.g., alerting
that a particular critical file was written can trigger a
process to check the contents of the file).

By being integrated with the Web server and having the
ability to control the three processing steps of the requested
operation, the GAA-API can respond to suspected intrusion
in real-time before it causes damage, whether it is site
defacement, data theft, or a DoS attack.

A Web server has to be modified in order to utilize the
GAA-API. However, once the relatively easy integration is
completed, it becomes possible to handle access control
decisions and application level intrusion detection simulta-
neously. Furthermore, since the GAA-API is a generic tool,
it can be used by a number of different applications with no
modifications to the API code. In this paper, we focus on the
Web server. However, the API can provide enhanced
security for applications with different security require-
ments. We have integrated the GAA-API with the Apache
Web server, SOCKS5, sshd, and FreeS/WAN IPsec for
Linux.

2 POLICY REPRESENTATION

The Extended Access Control List (EACL) is a simple
language that we implemented to describe security policies
that govern access to protected resources and identify
threats that may occur within application and specify
intrusion response actions [5]. An EACL is associated with
an object to be protected. It specifies positive and negative
access rights with an optional set of associated conditions
that describe the context in which each access right is
granted or denied.

An EACL describes more than one set of disjoint policies.
The policy evaluation mechanism is extended with the
ability to read and write system state. The implementation

is based on conditions that provide support for monitoring
and updating internal system structures and their runtime
behaviors.

A condition may either explicitly list the value of a
constraint or specify where the value can be obtained at
runtime. The latter allows for adaptive constraint specifica-
tion since allowable times, locations, and thresholds can
change in the event of possible security attacks. The value of
condition can be supplied by other services, e.g., an IDS. All
conditions are classified as:

. Preconditions specify what must be true in order to
grant the request (e.g., access identity, time, location,
and system threat level).

. Request-result conditions must be activated
whether the authorization request is granted or
whether the request is denied (e.g., audit, notifica-
tion, and threshold).

. Midconditions specify what must be true during the
execution of the requested operation (e.g., a CPU
usage threshold that must hold during the operation
execution).

. Postconditions are used to activate post execution
actions, such as logging and notification whether the
operation succeeds or fails.

A condition block defines a conjunction of a totally
ordered set of conditions. Conditions are evaluated in the
order they appear within a condition block. An EACL entry
consists of a positive or negative access right and four
optional condition blocks: a set of preconditions, a set of
request-result conditions, a set of midconditions, and a set
of postconditions. An EACL consists of an ordered set of
disjunctive EACL entries. An EACL representation sup-
ports disjunction and conjunction of conditions to activate
different control modes. A transition between the disjoint
EACL entries is regulated automatically by reading the
system state (e.g., time of day or the system threat level).

In the current framework, the evaluation of entries within
an EACL and evaluation of conditions within an EACL entry
is totally ordered. Evaluation of an EACL starts from the first
to the last in the list of EACL entries. The resolution of
inconsistent authorizations is based on ordering. The entries
whichhavealreadybeenexamined takeprecedenceovernew
entries. The order has to be assessed before EACL evaluation
starts. Determining the evaluation order is currently done by
apolicy officer.We recognize that the function of defining the
order of EACL entries and conditions within an entry can be
best served by an automated tool to ensure policy correctness
and consistency and to ease the policy specification burden
on the policy officer. We plan to design and implement such
tool in the future. The GAA-API provides a general-purpose
execution environment in which EACLs are evaluated.

2.1 Policy Composition

Policy composition is a process of relating separately
specified policies. Our framework supports system-wide
and local policies. This separation is useful for efficient
policy management. Instead of repeating policies that apply
to all applications in individual application policies, we
define these policies as a separate system-wide policy that is
applied globally and is consulted on all the accesses to all
applications. Local policies allow users and applications to

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

9

define their own policy in addition to the global one. The
composed policy is constructed by merging the system-
wide and local policies. First, system-wide policies are
retrieved and placed at the beginning of the list of policies.
Then, the local policies are retrieved and added to the list.
Thus, system-wide policies implicitly have higher priority
than the local policies.

A system-wide policy specifies a composition mode that
describes how local policies are to be composed with the
system-wide policy. The framework supports three compo-
sition modes:

. Expand. A system-wide policy broadens the access
rights beyond those granted by local policies. It is the
equivalent of a disjunction of the rights. The access is
allowed if either the system-wide or the local policy
allows the access. This is useful to ensure that a
request permitted by the system-wide policy cannot
fail due to access rejection at the local level.

. Narrow. A system-wide policy narrows the access
rights so that objects cannot be accessed under
particular conditions regardless of the local policies.
The policy that controls access to an object may have
mandatory anddiscretionary components. Generally,
mandatory policy is set by the domain administrator,
while discretionary policy is set by individuals or
applications. The mandatory policies must always
hold. The discretionary policies must be satisfied in
addition to themandatorypolicies. Thus, the resulting
policy represents the conjunction of the mandatory
and discretionary policies.

. Stop. If a system-wide policy exists, that policy is
applied and local policies are ignored. An adminis-
trator may require complete overriding of the local
policies with the system-wide policies. This is useful
in order to react quickly to an attack. One might use
the stop mode to shut down certain component

systems. This is also useful when the administrator
wants to, for example, allow access to a document
only to himself. If he specifies a policy using the
expand mode, then additional access can be granted
at the local level. If he uses narrow mode, the local
policies could add additional restrictions that can
deny the access.

To evaluate several separately specified local (or system-

wide) policies, we take a conjunction of the policies.

3 GENERIC APPLICATION LEVEL INTRUSION

DETECTION FRAMEWORK

The system detects intrusions by comparing access request
patterns against the security policies and taking some
actions if the request is judged to be suspicious. Because this
applies to any application, this portion of the system can be
fairly generic and used for a number of applications.
However, the database of known intrusion scenarios, attack
patterns, and responses should be customized for different
applications. The customization is done through specifica-
tion of policies expressed in EACL format. Fig. 1 shows a
high-level view of our framework.

The access control module mediates access requests
generated by applications and forwarded to the GAA-API
for approval. The detector examines access requests and
determines the presence of an attack based on the policies.
If the detector determines the request to be suspicious, the
countermeasure handler will take the corrective actions to
prevent malicious actions from being executed. The
Security Database provides information collected from
various sources including: user activity, misuse signatures
and intrusion scenarios, application audit records, etc. The
Security policy (EACL) contains:

. Positive and negative authorizations checked by the
access control module.

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 3

Fig. 1. Generic Intrusion Detection and response.

10

. The information to be analyzed by the detector (e.g.,
database of attacks, user activity profiles, parameters
of an access request and information obtained from
monitoring the execution of the requested operation,
and a status (success or failure) of the completed
operation).

. Actions to be performed by the countermeasure
handler for incident response—the system may deny
requested access, affect execution of the requested
operation (e.g., suspend or kill a process), generate
alarms and audit records, update firewall rules, and
so on.

4 GAA-API AND IDS INTERACTIONS

The data extracted from an application at the access control
time can be supplemented with data from a network and
host-based IDSs to detect attacks not visible at the
application level and reduce the false alarm rate. The
current GAA-API interaction with IDS is limited to
determining the current system threat profile and adapting
the security policy to respond to changing security
requirements. Our next task is to support closer interaction
between the GAA-API and different IDSs.

4.1 “GAA-API to IDS” Interactions

Here are the kinds of information that the GAA-API can
report to an IDS:

1. Ill-formed access requests. Because the GAA-API
processes access control requests by applications, the
API can apply application-level knowledge to deter-
mine whether the request is properly formed. Ill-
formed access requests may signal an attack. For
example, consider anapplication that issuesqueries to
a database. It is assumed that the application makes
bug-free database queries. If there are errors in the
access request, it may indicate that someone has
compromised the application server and is perform-
ing ad hoc queries against the database.

2. Accesses requests with abnormal parameters. The
API can report accesses requests with parameters
that violate site policy or are abnormally large.

3. Denied access. The API can report even a single
instance of access denial to sensitive system objects.
The API can report attempts to access nonexistent
hosts on a network, which could indicate network
scanning or mapping activity and attempts to use
critical commands.

4. Exceeding thresholds. Examples of types of events
that can be controlled by the threshold detectors and
reported by the GAA-API include the number of
failed login attempts within a given period of time.

5. Incidents. The GAA-API can report detected appli-
cation-level attacks.

6. Suspicious application behavior. The API can
report unusual application behavior such as read
only application creating files.

7. Legitimate activity. The GAA-API can communicate
access request information to IDS. This information
can be used to derive profiles that describe the
typical behavior of users working with different

applications. An automatically developed profile can
be created by an IDS module that collects and
processes the information about granted access
rights over time and forms a statistically valid
sample of user behavior that can be used for
anomaly detection.

4.2 “IDS to GAA-API” Interactions

The GAA-API can request a network-based IDS to report,
for example, indications of address spoofing. This informa-
tion can be used in addition to the application-level attack
signatures to further reduce the false positive rate and avoid
DoS attacks. This is particularly important for applying
proactive countermeasures, such as updating firewall rules
and dropping connections.

The API can request information for adjusting policies,
such as values for thresholds, times, and locations. When
implementing a threshold detector, the obvious difficulty is
choosing the threshold number and a time interval of the
analysis for a particular event. The values may depend on
many factors and can be determined by a host-based IDS
and communicated to the GAA-API.

5 GAA-APACHE INTEGRATION

5.1 Apache Access Control

Apache’s access control system [6] provides a method for
Web masters to allow or deny access to certain URL paths,
files, or directories. Access can be controlled by requiring
username and password information or by restricting the
originating IP address of the client request.

Access control is usually confined to specific directories
of the document tree. When processing client’s request to
access a document, Apache looks for an access control file
called .htaccess in every directory of the path to the
document.

Here is a sample .htaccess file:

Order Deny; Allow

Deny from All

Allow from 10:0:0:0=255:0:0:0

AuthType Basic

AuthUserFile =usr=local=apache2=:htpasswd-isi-staff

Require valid-user

Satisfy All

The “Allow from 10.0.0.0/255.0.0.0” allows
connections only from hosts within the specified IP range.
All other hosts will get a “Permission Denied” message. The
“Require valid-user” requires that the user enter a
username and password. These username/password pairs
are stored in a separate file specified by the AuthUserFile
directive.

After receiving an access request, the Apache core
modules call the check_dir_access function in mod_access or
the authenticate_basic_user, check_user_access routines in mod_
auth to check access control policies. A structured parameter
request_rec is provided to the routines, containing information
about the request. Finally, every routine returns the decision
to the core modules. Three output values are defined:
HTTP_OK—the request is granted; HTTP_DECLINED—the

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

11

request is rejected; and HTTP_AUTHREQUIRED—user
authentication is required to make further decision.

5.2 Adding GAA-API to Enhance the Access Control
of the Apache Server

The preexisting version of Apache does not support flexible
fine-grained policies that can control not only which users
or groups and from which locations are allowed access, but
also support other conditions, including time, system load,
or system treat level. Within the Apache configuration file,
the directive Satisfy All specifies that both of the
constraints on IP address and user authentication should
be satisfied to authorize an access request. Satisfy Any

means that the request will be granted if either of the two
constraints is met. However, these directives cannot express
a policy with logical relations among three or more
constraints. With our integration of the GAA-API, these
limitations are eliminated. Here are the major advantages of
the GAA-Apache integration:

. The GAA-API standard libraries provide routines
that evaluate conditions on time, location, token-
matching, etc. They can be used to check the access
control parameters for Apache. For instance, server,
client, and proxy IP address can be evaluated by the
location routine. Client request time, creation time,
and last modified time of requested resource can be
evaluated by the time routine. Protocol version
number and browser type can be evaluated by the
token-matching routine.

. Besides making decisions of whether a request is
accepted or rejected, the GAA-API libraries provide
routines that can execute certain actions, such as
logging information, notifying the administrator, etc.
Furthermore, the routines can be activated whether
the request succeeds or fails (when defined as
request-result conditions) or whether the requested
operation succeeds or fails (when defined as post-
conditions). Thus, the GAA-API supports fine-
tuning of the notification and audit services.

. The GAA-API is structured to support the addition
of modules for evaluation of new conditions. Web
masters can write their own routines to evaluate
conditions or execute actions and register them with
the GAA-API. Moreover, the routines can be loaded
dynamically so that one does not need to recompile
the whole Apache package to add new routines.

. The semantics of EACL format supported by the
GAA-API can represent all logical combinations of
security constraints.

. The GAA-API supports adaptive security policies,
which detect security breaches and respond to attacks
by modifying security measures automatically.

5.3 GAA-Apache Access Control

The GAA-API is integrated into Apache by modifying the

check_dir_access function. The “glue” code extracts the

information about requests from the Apache core modules,

initializes the GAA-API, calls the API functions to evaluate

policies and, finally, returns access control decision and

status values to the modules. The GAA-Apache integration

is shown in Fig. 2.

The GAA-API makes use of system-wide and local

configuration and policy files. The configuration files list

routines and parameters for evaluating conditions specified

in the policy files. The system-wide policy applies to all

applications in the system. The local policy file describes

security requirements of Apache. The GAA-API returns

three status values (GAA_YES/GAA_NO/GAA_MAYBE) to de-

scribe policy enforcement process:

1. Authorization status Sa indicates whether the
request is authorized (GAA_YES), not authorized
(GAA_NO), or uncertain (GAA_MAYBE).

2. Midcondition enforcement status Sm indicates the
evaluation status of the midconditions.

3. Postcondition enforcement status Sp indicates the
evaluation status of the postconditions.

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 5

Fig. 2. GAA-Apache integration.

12

The status values are obtained during the evaluation of
conditions in the relevant EACL entries: GAA_YES—all

conditions are met; GAA_NO—at least one of the conditions
fails; GAA_MAYBE—none of the conditions fail, but there is at

least one condition that is left unevaluated because the
corresponding condition evaluation function is not regis-

tered with the API. Here are the three policy evaluation
phases:

1. Initialization phase. When the server daemon of
Apache starts, the GAA-API is initialized by calling
gaa_initialze and gaa_new_sc to extract and register
condition evaluation and policy retrieval routines
from the system and local configuration files, fetch
the system policy file, and generate internal struc-
tures for later use.

2. The access control phase starts with receiving a
request to access an object (e.g., HTML file).

a. The gaa_get_object_policy_info function is called
to obtain the security policies associated with
the requested object. The function reads the
system-wide policy file, converts it to the
internal EACL representation, and places it at
the beginning of the list of EACLs. Next, the
function retrieves and translates the local policy
file and adds it to the list. The system and local
policies are composed as described in Section 2.

b. The request is converted into a list of requested
rights. The context information (e.g., system
configuration, server status, client status, and
the details of access request) that may be used
by the condition evaluation routines is extracted
from the request_rec structure and is added to
requested right structure as a list of parameters.

c. Next, the gaa_check_authorization function is
called to check whether the requested right is
authorized by the ordered list of EACLs. This
function finds the EACL entries where the
requested right appears and calls the registered
routines to evaluate pre and request-result
conditions in the entries. If there are no
preconditions, the authorization status is set to
GAA_YES. Otherwise, the preconditions are eval-
uated and the result is stored in the authoriza-
tion status Sa. If the request-result conditions are
present in the entry, the conditions are evalu-
ated and the intermediate result is calculated.
The conjunction of the intermediate result and
Sa is stored in the authorization status Sa.

d. Finally, the status Sa is translated to the Apache
format and is passed to the Apache core modules
as a return value of the check_dir_access function.
GAA_YES is translated to HTTP_OK (Apache can
grant the request). GAA_NO is translated to
HTTP_DECLINED (Apache should reject the re-
quest). In some cases, the GAA_MAYBE is trans-
lated to HTTP_AUTHREQUIRED, in other cases, to
HTTP_DECLINED.

In particular, the GAA_MAYBE is used to enforce adaptive

redirection policies. Apache may use the redirection for

minimizing the network delay, load balancing, or security

reason (e.g., redirect to a replica server that is closest to the

client in terms of network distance). The redirection policies

encoded in the preconditions specify, characteristics of a

client, current system state, and URL that must serve the

client. With this setup, the GAA-API first checks the

preconditions that encode client’s information and system

state. The condition of type pre_cond_redirect encodes the

URL and is returned unevaluated. When Apache receives

the HTTP_AUTHREQUIRED, the server checks whether there

is only one unevaluated condition of the type pre_cond_re-

direct and creates a redirected request using the URL from

the condition value.

3. The execution control phase consists of starting

the operation execution process and calling the
gaa_execution_control function, which checks if the

midconditions associated with the granted access

right are met. The result is returned in Sm. The

implementation of this phase has not been com-

pleted yet.
4. During the postexecution action phase, the gaa_

post_execution_actions function is called to enforce

the postconditions associated with the granted

rights. This function performs policy enforcement

after the operation completes by executing actions
such as notifying by email, modifying system

variables, writing log file, etc. The operation

execution status (indicating whether the operation

succeeded/failed) is passed to the gaa_post_execu-

tion_actions. If no postconditions are found,

GAA_YES is returned; otherwise, the postconditions

are evaluated and the result is returned in Sp.

6 DEPLOYMENTS

In this section, we describe several examples to illustrate

how our framework can be deployed to enable fine-grained

access control and intrusion detection and response.

6.1 Network Lockdown

We first show how our system adapts the applied
authentication policies to require more information from a
user when system threat level changes. Consider an
organization with the mixed access to Web services. Access
to some Web resources require user authentication, some do
not. An IDS supplies a system threat level. For example, low
threat level means normal system operational state,
medium threat level indicates suspicious behavior, and
high threat level means that the system is under attack.
Policy: When system threat level is higher than low, lock down
the system and require user authentication for all accesses within
the network.
System-wide policy:

eacl mode 1 # composition mode narrow

EACL entry 1

neg access right � �
pre cond system threat level local ¼ high

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

13

Local policy:

EACL entry 1

pos access right apache �
pre cond system threat level local > low

pre cond accessID USER apache �

The system-wide policy specifies the mandatory require-
ment: “No access is allowed when system threat level is
high” that cannot be bypassed by a local policy. The local
policy specifies that all Apache accesses have to be
authenticated if the system threat level is higher than
“low.” For example, if password authentication is required,
a user will be asked for a username and a password.

6.2 Application-Level Intrusion Detection

We next show how the system supports prevention of
penetration and/or surveillance attacks by detecting a
CGI script abuse.

System-wide policy:

eacl mode 1 # composition mode narrow

EACL entry 1

neg access right � �
pre cond accessID GROUP local BadGuys

Local policy:

EACL entry 1

neg access right apache �
pre cond regex gnu 00 0 � phf �0 0 �test� cgi�0 00

rr cond notify local on:failure=email:

sysadmin=info:CGIexploit

rr cond update log local on:failure=BadGuys=info:IP

EACL entry 2

pos access right apache �

Entry 1 in the system-wide policy specifies the
mandatory requirement that members of the group
BadGuys are denied access. Evaluation of the precondi-
tion pre_cond_group includes reading a log file of the
suspicious IP addresses and trying to find an IP address
that matches the address from which the request was
sent. Entry 1 in the local policy contains a precondition
pre_cond_regex that examines the request for occur-
rence of regular expressions phf* and *test-cgi*. If
no match is found, the GAA-API proceeds to the next
EACL entry that grants the request. If this condition is
met, the request is rejected. The rr_cond_notify

condition sends e-mail to the system administrator
reporting time, IP address, URL attempted, and a threat
type. Next, the rr_cond_update_log updates the
group BadGuys to include new suspicious IP address
from the request.

New signatures can be specified using regular expres-
sions and numeric comparison. For example, the follow-
ing precondition detects a particular DoS attack:
pre_cond_regex gnu ‘*///////////////////*.’ Eva-
luation of this condition includes checking the request for
presence of a large number of “/” characters that most

likely indicates an attempt to exploit a well-known
apache bug that slows down Apache and fills up the
logs fast.

The precondition pre_cond_regex gnu ‘*%*’ detects
malformed URLs (part of the URL contains the percent
character). This may indicate ongoing attack, such as
NIMDA. NIMDA exploits Microsoft IIS vulnerabilities by
sending a malformed GET request. The precondition
pre_cond_expr local > 1; 000 checks that the length of
input to a CGI script is no longer than 1,000 characters. This
condition detects a buffer overflow attacks (e.g., Code Red
IIS attack).

Adding suspicious hosts to the BadGuys may allow our
system to stop attacks with unknown signatures. Often,
vulnerabilities are tested by scripts that generate a number of
requests. Each request exploits a particular bug. If the system
identifies requests fromanaddress asmatchingknownattack
signature, then subsequent requests from that host initiated
by the same script, which checks for vulnerabilities not yet
known, can still be blocked. Further, since this blacklist is
specified ina system-widepolicy, the list is sharedbymanyof
the hosts that improves the overall security of the system.

7 PERFORMANCE EVALUATION

The performance of GAA-API integrated Apache server was
evaluated by using four different types of policy files. Policy I
doesnot haveany conditions andalwaysgrants access. Policy
II includes simpleconditions that do not need any file access.
Policy III includes conditions that require reading and
writing variable files and log files. Policy IV contains more
expensive conditions that check user authentication and
perform asynchronous e-mail notification to the system
administrator. The sample policy files can be found in the
Appendix.

GAA-API function calls consist of three major phases:
1) “Initialization” phase that reads the configuration and
system policy files for GAA-API, 2) “GetPolicy” phase that
reads the local policy file associatedwith the object for which
the access request is submitted, and 3) “CheckAuthorization”
phase that returns authorization decision.

This experiment was conducted on a PC with an Intel
Pentium 4, 1.8GHz, running RedHat Linux 7.3. Fig. 3 shows
the result of the experiment. The values on the table are
average values of 10 runs. The entry “Apache” is the
execution time the original Apache modules incurred. The
“Overhead”percentagewas calculatedbasedon thevalues in
“Apache.”

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 7

Fig. 3. Performance evaluation results.

14

As shown in the figure, “Initialization” is the most
expensive phase. However, for each GAA-Apache process,
initialization needs to be executed only once at the first time
GAA-API is called. The figure shows the overheads that
GAA-API introduces with the first request (Overhead with
Init), and the overheads for the subsequent requests in each
process (Overhead w/o Init).

The “Get Policy” phase is almost constant with low
values because it just reads the local policy files. The only
phase whose performance is affected by having different
types of policies is the “Check Authorization” phase.

From Table 1, for the first call of GAA-API in a GAA-
Apache process, GAA-API incurs an overhead of more than
400 percent because of the initialization phase. However, for
the subsequentcalls of GAA-API in the same process, GAA-
API skips the initializationphase and significantly reduces its
overhead. For the policieswith conditions that do not require
file access (e.g., Policy II), the overhead from GAA-API
function calls to the Apache Web server is lower than
20 percent. For more expensive policies with conditions that
require file access, encryption, or process forking (e.g.,
Policies III and IV), the GAA-API’s overhead was more than
50 percent.

The sample policy files used for the evaluation are fairly
short in length, but we believe that they represent most of
the possible cases. The individual policy files cannot grow
huge because a local policy file is associated with an object
or a group of objects. This means that, even if the system-
wide policy could become complex, the performance of the
system will not degrade linearly because the system will
evaluate only the policy file that is specifically associated
with the object for which the access request is submitted.

8 RELATED WORK

AppShield [7] is a proprietary policy-based system that
protects Web servers. The AppShield intercepts and
analyzes all requests and dynamically adjusts its security
policy to prevent attackers from exploiting application-level
vulnerabilities. It uses dynamic policy not by looking for the
signatures of suspicious behavior, but by knowing the
intended behavior of the site and rejecting all other uses of
the system. Emerald architecture [2] includes a data-
collection module integrated with Apache Web server.
The module extracts the request information internal to the
Apache server and forwards it to an intrusion detection
component that analyzes HTTP traffic. Both AppShield and

Emerald systems are designed specifically for Web servers
and cannot be used for other types of applications. In
contrast, the GAA-API provides a generic policy evaluation
and an application-level intrusion detection environment
that can be used by different applications.

Almgren et. al. [1] provide an overview of the occur-
rences of Web server attacks and describe an intrusion
detection tool that analyzes the CLF logs. The tool finds and
reports intrusions by looking for attack signatures in the log
entries. However, the monitor cannot directly interact with
a Web server and, thus, cannot stop the ongoing attacks.

9 DISCUSSION

Our application-level, policy-based approach to intrusion
detection and response offers several important advantages
over traditional host and network-based approaches:

1. Customization. Instead of having an IDS look for a
restricted set of predefined signatures or time-
variant statistical profiles, this approach allows each
organization to define suspicious events in terms of
policies for accessing application-level objects. The
policies take into account the organization’s and
application’s security requirements.

2. Flexibility. Security policies supported in our system
can be defined in terms of acceptable and unaccep-
table access patterns to protected resources. For
example: A Closed World policy states that every-
thing that is not explicitly authorized is unacceptable
and may indicate suspicious behavior. It might be
possible to define a minimum set of ssh commands
that are allowed and then define the presence of all
other commands as a violation of the policy. An
Open World policy defines that everything that is
explicitly denied is unacceptable and may indicate
suspicious behavior. A Mixed World policy may
recognize some explicitly authorized access patterns
as suspicious.

3. Preemptive response. By being integrated with the
application and having the ability to control the
three processing steps of a requested operation, the
system can respond to suspected intrusion in real-
time. For example, the system can deny the opera-
tion, suspend the operation execution, and notify
about the success or failure of the completed
operation.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

TABLE 1
Performance Evaluation Results

15

4. Elimination of several IDS vulnerabilities. Traditional
IDS is susceptible to desynchronization attacks since
usually the IDS does not actively participate in the
connection it monitors. With the proposed approach,
the attempts to desynchronize the Detection engine
from application will fail because the application is
able to pass information to the engine through the
GAA-API. As the system monitors events at the user
level of abstraction, it is not vulnerable to traffic
tampering attacks such as insertion and evasion. Fast
attacks on IDS (that seek to exploit application’s
vulnerability before the IDS can apply counter
measures) will not succeed because the system
processes access requests by applications, and the
application waits for the result.

5. Reduction of false negatives and false positives. The
advantagesof looking for the attacks at the application
level include the ability to access decrypted informa-
tion about a request. A request transported to the
application through an encrypted channel is not
visible to a network based IDS. The ability to interface
with the application directly, with significant applica-
tion-specific knowledge, allows application-based
intrusion monitoring to detect suspicious behavior
due to authorized users exceeding their authorization
or exploitation of application-specific vulnerabilities.
Using this approach could potentially result in
detecting a custom attack that has never been
observed in the past, thus reducing the number of
falsenegatives.Another advantage is that information
on how the request is handled by the server is
available at the application level (e.g., whether the
requested file is interpreted as a CGI script or HTML
file). Both network and host-based IDSs could not
make this distinction and if configured to look for
strings matching “phf.cgi” and “test-cgi,” they may
produce false positives.

10 FUTURE WORK

To improve efficiency of the GAA-Apache integration, we
will add support for caching of the retrieved and translated
policies for later reuse by subsequent requests. We will
investigate a possibility of implementing a simple profile
building module and anomaly detector to support anomaly-
based intrusion detection in addition to the signature-based.
We plan to implement the execution control phase for
Apache. We will explore the utility of midconditions for
protection from compromised or badly written CGI scripts
processed at the server. We plan to design a policy-
controlled interface for establishing a subscription-based
communication channels to extend the GAA-API and IDSs
communication.

In this paper, we have considered simple attacks that
require a single action (malicious request) in order to
achieve the attacker’s goal. More complex and stealthy
attacks require a series of actions that constitute an attack
scenario. In order to detect such attacks, we will extend our
system with the support for attack signatures that describe a
sequence of access requests and system state conditions that
represent an attack. To implement detection of such
complex signatures, we will use hypothesis generation
techniques. In particular, we will study the application of

Bayesian methods [4] to classify observed events into attack
scenarios.

In the current framework, we assume that conditions are
evaluated consecutively and that authorization requests do
not overlap. These two assumptions enable us to concen-
trate on a single condition evaluation per each time interval
and, therefore, avoid the problem of coordination of
multiple condition evaluation processes. However, this
approach results in inefficient policy evaluation process
and leads to systems that cannot scale to large numbers of
objects. The future directions for this research include
exploring extensions to the framework to support: con-
current requests, replication of the evaluation mechanism,
concurrent evaluation of conditions within the same
request, and distributed policy enforcement. At this point,
the issues of spatial and temporal relationships among the
policy computations become critical. Policies that govern
the same object may have nontrivial interdependencies
which must be carefully analyzed and understood.

Another limitation of the current framework is reliance
on a policy administrator for defining condition evaluation
order, which is then enforced by the framework. The
limited awareness of the spatial and temporal dependencies
among security policies may cause inconsistencies and
undesirable system behavior. In many cases, administrators
may not have a clear picture of the ramifications of policy
enforcement actions; therefore, enforcing these policies
might have unexpected interactive or concurrent behavior.
Automation is essential to minimize human error, and it can
only be used safely when there is a formal model that
explicitly addresses both the spatial and the temporal
aspects of dynamic authorization. Much research has been
done in the area of integration of active mechanisms into
relational and object-oriented DBMSs. We plan to test the
applicability of methods and concepts from the field of
active database systems to develop static and dynamic
analysis techniques for adaptive policies. The reuse of
techniques developed in the database community is
necessary to apply best practices and to avoid repeating
mistakes.

Finally, in order to put the developed formalism into
practice, the researchers will implement a set of tools that
provide graphical interfaces supporting both static activities
such as:

. A specialized interactive policy analyzer/editor—a
development tool that provides compile-time exam-
ining and detection of policy rule problems. The tool
will be used to create policies with strong security
guarantees, eliminating guesswork in the design,
and deployment of dynamic authorization.

. A runtime monitor that provides runtime support
for the execution rules derived from the semantic
restrictions to maintain the policy processing auto-
matically, asynchronously, and correctly.

11 CONCLUSIONS

Traditional access control mechanisms have little ability to
support or respond to the detection of attacks. In this paper,
we presented a generic authorization framework that sup-
ports security policies that can detect attempted and actual
security breaches and which can actively respond by

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 9

16

modifying security policies dynamically. The GAA-API
combines policy enforcement with application-level intru-
sion detection and response, allowing countermeasures to be
applied to ongoing attacks before they cause damage.
Because the API processes access control request by applica-
tions, it is ideally placed to apply application-level knowl-
edge about policies and activities to identify suspicious
activity and apply appropriate responses. The GAA-API
implementation is available at http://gaaapi.sysproject.info.
The API has been integrated with several applications,
including Apache, SOCKS5, sshd, and FreeS/WAN IPsec
for Linux.

APPENDIX

The four different types of policies used in the Section 7.
Policy I

pos access right apache �

Policy II

pos access right apache �
pre cond access host apache 00127:0:0:1 OR 128:9:0:0=16

OR usc:edu00

pre cond access time apache 0001=01=03-12=31=05

MON-FRI00

pre cond check regex apache 00#apache:uri ¼0 �:html0 00

Policy III

neg access right apache �
pre cond check equal apache 00%ð#remote ip:threat

levelÞ ¼ HIGH00

rr cond inc variable apache 00%ð#remote ip:reject

countÞ00

rr cond append log apache 00%LogMsgReject00

Policy IV

pos access right apache �
pre cond access user apache 00%InspectedUser

List00

rr cond async email notify apache 00root@localhost00

ACKNOWLEDGMENTS

This effort was sponsored by the US Defense Advanced
Research Projects Agency (DARPA) and Air Force Research
Laboratory, US Air Force Materiel Command, USAF, and
the Xerox Corporation under the following agreements:
1) F30602-00-2-0595, Dynamic Policy Evaluation of Contain-
ing Network Attacks Project (DEFCN); 2) DABT63-94-C-
0034, Security Infrastructure for Large Distributed Systems
Project (SILDS); 3) J-FBI-95-204, Global Operating System
Technologies Project (GOST); 4) DE-FC03-99ER25397, Dip-
lomat project; and 5) HE1254-97, XAUTH Project. The US
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions

contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the US
Defense Advanced Research Projects Agency (DARPA), the
US Air Force Research Laboratory, US Department of
Energy, the US Government, or the Xerox Corporation.
Figures and descriptions are provided by the authors and
are used with permission.

REFERENCES

[1] M. Almgren, H. Debar, and M. Dacier, “A Lightweight Tool for
Detecting Web Server Attacks,” Proc. Network and Distributed
System Security Symp., 2000.

[2] M. Almgren and U. Lindqvist, “Application-Integrated Data
Collection for Security Monitoring,” Proc. Fourth Int’l Symp. Recent
Advances in Intrusion Detection, pp. 22-36, 2001.

[3] R. Bace and P. Mell, “Intrusion Detection Systems,” NIST Special
Publication on Intrusion Detection Systems, Nat’l Inst. of Standards
and Technology, 2001.

[4] D.J. Burroughs, L.F. Wilson, and G.V. Cybenko, “Analysis of
Distributed Intrusion Detection Systems Using Bayesian Meth-
ods,” Proc. IEEE Int’l Performance Computing and Comm. Conf., Apr.
2002.

[5] T.V. Ryutov and B.C. Neuman, “The Specification and Enforce-
ment of Advanced Security Policies,” Proc. Conf. Policies for
Distributed Systems and Networks, 2002.

[6] R. Thau, “Design Considerations for the Apache Server API,”
Proc. Fifth Int’l World Wide Web Conf., 1996.

[7] Sanctum, Inc., http://www.sanctuminc.com, 2003.

Tatyana Ryutov received the MS degree in
applied mathematics from Moscow State Uni-
versity, Russia, in 1991, and the MS and PhD
degrees in computer science from the University
of Southern California, USC, in 1999 and 2002,
respectively. She joined USC/ISI in 1996 work-
ing as a graduate research assistant, and
focused on the development and implementa-
tion of the access control framework for dis-
tributed systems that supports active policies,
policy composition, and is sensitive to network

threat conditions. Currently, Dr. Ryutov is working as a computer
scientist at the University of Southern California’s Information Sciences
Institute with Dr. Clifford Neuman on the Dynamic Policy Evaluation for
Containing Network Attacks (DEFCN) project.

Clifford Neuman received the bachelors degree
from the Massachusetts Institute of Technology
and, subsequently, worked at Project Athena.
He received the MS and PhD degrees from the
University of Washington. He is the director of
the Center for Computer Systems Security at
The Information Sciences Institute (ISI) of the
University of Southern California (USC), associ-
ate division director of the Computer Networks
Division at ISI, and a faculty member in the

Computer Science Department at USC. Dr. Neuman conducts research
in distributed systems, computer security, and electronic commerce. He
is the principal designer of Kerberos authentication system, which,
among other deployments, provides user authentication for Microsoft’s
Windows 2000 and Windows XP. He also developed the NetCheque1
and NetCash systems, and the Prospero Directory Service. His current
research focuses on the use of dynamic security policies in distributed
systems that can support the formation of dynamic coalitions of
cooperating organizations while adapting and responding to perceived
network threats. He is a senior member of the IEEE.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

17

Dongho Kim received the BS degree in
computer engineering from Seoul National Uni-
versity in 1990, the MS degree in computer
science from the University of Southern Califor-
nia (USC) in 1992, and the PhD degree in
computer science from USC in 2002. He is a
computer scientist at the University of Southern
California’s Information Sciences Institute (USC/
ISI). He has been working on the Dynamic Policy
Evaluation for Containing Network Attacks

(DEFCN) project for three years as a member of Global Operating
Systems Technology (GOST) group in Computer Networks Division of
USC/ISI. He has been an instructor for the graduate-level Advanced
Operating Systems course at the USC during Fall semesters since
2001. He is a member of the IEEE and the IEEE Computer Society.

Li Zhou received the BS degree in computer
science from Beijing University in 2001. He is a
PhD student in the Computer Science Depart-
ment, University of Southern California (USC).
Currently, he is working in the Generic Operating
System Technology (GOST) Group, Information
Science Institute, USC, as a graduate research-
ing assistant.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

RYUTOV ET AL.: INTEGRATED ACCESS CONTROL AND INTRUSION DETECTION FOR WEB SERVERS 11

18

Integrated Access Control and Intrusion Detection for Web Servers
�

Tatyana Ryutov, Clifford Neuman, Dongho Kim and Li Zhou
Information Sciences Institute

University of Southern California�
tryutov, bcn, dongho, zhou � @isi.edu

Abstract

Current intrusion detection systems work in isolation
from access control for the application the systems aim to
protect. The lack of coordination and inter-operation be-
tween these components prevents detecting and responding
to ongoing attacks in real time, before they cause damage.
To address this, we apply dynamic authorization techniques
to support fine-grained access control and application level
intrusion detection and response capabilities. This paper
describes our experience with integration of the Generic Au-
thorization and Access Control API (GAA-API) to provide
dynamic intrusion detection and response for the Apache
Web Server. The GAA-API is a generic interface which may
be used to enable such dynamic authorization and intrusion
response capabilities for many applications.

1 Introduction and Motivation

Web servers continue to be attractive targets for attack-
ers seeking to steal or destroy data, deny user access or em-
barrass organizations by changing web site contents. Fur-
thermore, because web servers must be publicly available
around the clock, the server is an easy target for outside in-
truders. In order to penetrate their targets, attackers may

�
Effort sponsored by the Defense Advanced Research Projects Agency

(DARPA) and Air Force Research Laboratory, Air Force Materiel Com-
mand, USAF, and the Xerox Corporation under the following agreements:
(1) F30602-00-2-0595,Dynamic Policy Evaluation of Containing Network
Attacks Project (DEFCN); (2) DABT63-94-C-0034, Security Infrastruc-
ture for Large Distributed Systems Project (SILDS); (3) J-FBI-95-204,
Global Operating System Technologies Project (GOST); and (4) DE-FC03-
99ER25397, Diplomat project. The U.S. Government is authorized to re-
produce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force Research Laboratory, U.S. Department of Energy or the U.S.
Government. Figures and descriptions were provided by the authors and
are used with permission.

exploit well-known service vulnerabilities. A web server
can be subverted through vulnerable CGI scripts, which may
be exploited by meta characters or buffer overflow attacks.
These vulnerabilities may be related to the default installa-
tion of the server or may be introduced by careless writing
of custom scripts.

Web servers are also popular targets for Denial of Service
(DoS) attacks. An attacker sends a stream of connection re-
quests to a server in an attempt to crash or slow down the
service. Launching a DoS attack against a web server can be
accomplished in many ways, including ill-formed HTTP re-
quests (e.g., a large number of HTTP headers). As the server
tries to process such requests it slows down and becomes un-
able to process other requests. In addition, web servers ex-
hibit susceptibility to password guessing attacks.

To address these risks, web servers require increased se-
curity protection. Effective system security starts with secu-
rity policies that are supported by an access control mech-
anism. Access control policy to be enforced should de-
pend on the current state of the system, e.g., time of day,
system load or system threat level. More restrictive orga-
nizational policies may be enforced after hours, when the
system is busy or if suspicious activity has been detected.
Unfortunately, many web servers (e.g., Apache and IIS)
support only limited identity- and host-based policies that
deny/allow access to protected resources. The policies are
checked only when an access request is received to deter-
mine whether the request should be permitted or forbidden.
These policies do not support observing and reporting sus-
picious activity (e.g., embedding hexadecimal characters in
a query) and modifying system protection as a result.

Thus, the security policies must not only specify legiti-
mate user privileges but also aid in the detection of threats
and adapt their behavior based on perceived system threat
conditions. Even a single instance of a request for a vul-
nerable CGI script or malformed request should be reported
immediately and countermeasures should be applied. Such
countermeasures may include:
- generating audit records;
- notifying network servers that are monitoring security rel-

19

goodelle
Text Box
Appendix B:

evant events in the system;
- tightening local policies (e.g., restricting access to local
users only or requesting extra credentials);
- modifying overall system protection. Examples include
terminating the session, logging the user off the system, dis-
abling local account or blocking connections from particular
parts of the network or stopping selected services (e.g., dis-
able ssh connections).

These actions would be followed by an alert to the se-
curity administrator, who can then assess the situation and
take the appropriate corrective actions. This step is impor-
tant, since an automated response to attacks can be used by
an intruder in order to stage a DoS (the intruder could have
impersonated a host or a user).

Traditional access control mechanisms were not de-
signed to aid the detection of threats or to adjust their behav-
ior based on perceived threat conditions. Common counter-
measures to web server threats depend on separate compo-
nents like firewalls, Intrusion Detection Systems (IDSs), and
code integrity checkers. While these components are useful
in detecting some kinds of attacks, they do not fully address
a web server’s security needs. For example, firewalls can
deny access to unauthorized network connections, but they
can not stop attacks coming in via authorized ports. In the
general case, IDSs provide only incomplete coverage, leav-
ing sophisticated attacks undetected. Other disadvantages
include: large number of false positives and inability to pre-
emptively respond to attacks. Integrity checkers can detect
unauthorized changes to files on a web site, but only after
the damage has been done.

Motivated by the multitude of web server vulnerabilities
and generally unsatisfactory server protection, we propose
integrated approach to web server security - the Generic Au-
thorization and Access-control API (GAA-API) that sup-
ports fine-grained access control and application level intru-
sion detection and response.

The GAA-API evaluates HTTP requests and determines
whether the requests are allowed and if they represent a
threat according to a policy. Our approach differs from other
work done in this area by supporting access control policies
extended with the capability to identify (and possibly clas-
sify) intrusions and respond to the intrusions in real time.
The policy enforcement takes three phases:
1. Before requested operation (e.g., display an HTML file or
run a CGI program) starts; to decide whether this operation
is authorized.
2. During the execution of the authorized operation; to de-
tect malicious behavior in real-time (e.g., a user process con-
sumes excessive system resources).
3. When the operation is completed; to activate post exe-
cution actions, such as logging and notification whether the
operation succeeds/fails. For example, alerting that a partic-
ular critical file (e.g., /etc/passwd) was modified can trigger

a process to check the contents of the file (e.g., check for a
null password).

By being integrated with the web server and having the
ability to control the three processing steps of the requested
operation, the GAA-API can respond to suspected intrusion
in real-time before it causes damage, whether it is site de-
facement, data theft or a DoS attack.

The disadvantage of the proposed approach is that a web
server has to be modified in order to utilize the GAA-API.
However, once the relatively easy integration is completed,
it becomes possible to handle access control decisions and
application level intrusion detection simultaneously. Fur-
thermore, since the GAA-API is a generic tool, it can be
used by a number of different applications with no modifi-
cations to the API code. In this paper we focus on the web
server. However, the API can provide enhanced security for
applications with different security requirements. We have
integrated the GAA-API with Apache web server, sshd and
FreeS/WAN IPsec for Linux.

2 Policy Representation

The Extended Access Control List (EACL) is a simple
language that we implemented to describe security policies
that govern access to protected resources, identify threats
that may occur within application and specify intrusion re-
sponse actions. An EACL is associated with an object to be
protected and specifies positive and negative access rights
with optional set of associated conditions that describe the
context in which each access right is granted or denied. An
EACL describes more than one set of disjoint policies. The
policy evaluation mechanism is extended with the ability to
read and write system state. The implementation is based on
conditions that provide support for monitoring and updating
internal system structures and their runtime behaviors.

A condition may either explicitly list the value of a con-
straint or specify where the value can be obtained at run
time. The latter allows for adaptive constraint specification,
since alowble times, locations and thresholds can change in
the event of possible security attacks. The value of condition
can be supplied by other services, e.g., an IDS.

In our framework, all conditions are classified as:

1. pre-conditions specify what must be true in order to
grant or deny the request, e.g., access identity,
time, location and system threat level.

2. request-result conditions must be activated whether
the authorization request is granted or whether the re-
quest is denied, e.g., audit and notification.

3. mid-conditions specify what must be true during the
execution of the requested operation, e.g., a CPU us-
age threshold that must hold during the operation
execution.

20

4. post-conditions are used to activate post execution ac-
tions, such as logging and notification whether the op-
eration succeeds/fails.

Failure of some of these conditions may signal suspicious
behavior,e.g., access is requested at unexpected times or un-
usual locations. Some conditions can trigger defensive mea-
sures in response to a perceived system threat level, e.g., im-
pose a limit on resource consumption or increase auditing.

A condition block defines a conjunction of a totally or-
dered set of conditions. Conditions are evaluated in the or-
der they appear within a condition block.

An EACL entry consists of a positive or negative ac-
cess right and four optional condition blocks: a set of pre-
conditions, a set of request-result conditions, a set of mid-
conditions and a set of post-conditions.

An EACL consists of an ordered set of disjunctive
EACL entries. An EACL representation supports disjunc-
tion and conjunction of conditions to activate different con-
trol modes. A transition between the disjoint EACL entries
is regulated automatically by reading the system state (e.g.,
time of day or the system threat level). Detailed EACL syn-
tax is given in the Appendix.

In the current framework, the evaluation of entries within
an EACL and evaluation of conditions within an EACL en-
try is totally ordered. Evaluation of an EACL starts from
the first to the last in the list of EACL entries. The resolu-
tion of inconsistent authorizations is based on ordering. The
entries which already have been examined take precedence
over new entries.

The order has to be assessed before EACL evaluation
starts. Determining the evaluation order is currently done
by a policy officer. We recognize that the function of defin-
ing the order of EACL entries and conditions within an en-
try can be best served by an automated tool to ensure policy
correctness and consistency and to ease the policy specifi-
cation burden on the policy officer. We plan to design and
implement such tool in the future. For further details about
the authorization model see [4].

The GAA-API provides a general-purpose execution en-
vironment in which EACLs are evaluated.

2.1 Policy Composition

Policy Composition is a process of relating separately
specified policies. Our framework supports system-wide
and local policies. This separation is useful for efficient pol-
icy management. Instead of repeating policies that apply to
all applications in individual application policies, we define
these policies as a separate system-wide policy that is applied
globally and is consulted on all the accesses to all applica-
tions. Local policies allow users and applications to define
their own policy in addition to the global one.

The composed policy is constructed by merging the
system-wide and local policies. First, system-wide policies
are retrieved and placed at the beginning of the list of poli-
cies. Then the local policies are retrieved and added to the
list. Thus, system-wide policies implicitly have higher pri-
ority than the local policies.

A system-wide policy specifies a composition mode that
describes how local policies are to be composed with the
system-wide policy. The framework supports three compo-
sition modes:

expand
A system-wide policy broadens the access rights beyond
those granted by local policies. It is the equivalent of a dis-
junction of the rights. The access is allowed if either the
system-wide or the local policy allows the access. This is
useful to ensure that a request permitted by the system-wide
policy can not fail due to access rejection at the local level.

narrow
A system-wide policy narrows the access rights so that ob-
jects can not be accessed under particular conditions regard-
less of the local policies. The policy that controls access
to an object may have mandatory and discretionary compo-
nents. Generally, mandatory policy is set by the domain ad-
ministrator, while discretionary policy is set by individuals
or applications. The mandatory policies must always hold.
The discretionary policies must be satisfied in addition to the
mandatory policies. Thus, the resulting policy represents the
conjunction of the mandatory and discretionary policies.

stop
If a system-wide policy exists, that policy is applied and lo-
cal policies are ignored. An administrator may require com-
plete overriding of the local policies with the system-wide
policies. This is useful in order to react quickly to an attack.
One might use the stop mode to shut down certain compo-
nent systems. This is also useful when the administrator
wants to, for example, allow access to a document (e.g., a
system log file) only to himself. If he specifies a policy us-
ing the expand mode, then additional access can be granted
at the local level. If he uses narrow mode, the local policies
could add additional restrictions that can deny the access.

To evaluate several separately specified local (or system-
wide) policies, we take a conjunction of the policies.

3 GAA-API and IDS interactions

The data extracted from an application at the access con-
trol time can be supplemented with data from a network- and
host-based IDSs to detect attacks not visible at the applica-
tion level and reduce false alarm rate.

The current GAA-API interaction with an IDS is limited
to determining the current system threat profile and adapt-
ing the security policy to respond to changing security re-
quirements. Our next task is to support closer interaction be-

21 21

tween the GAA-API and different IDSs. Here are the kinds
of information � that the GAA-API can report to IDS:

1. Ill-formed access requests, which may signal an at-
tack. Because the GAA-API processes access requests
by applications, the API can apply application level
knowledge to determine whether the request is prop-
erly formed.

2. Accesses requests with parameters that are abnormally
large or violate site’s policy.

3. Access denial to sensitive system objects.

4. Violating threshold conditions, e.g., the number of
failed login attempts within a given period of time.

5. Detected application level attacks. The report may in-
clude threat characteristics, such as attack type and
severity, confidence value and defensive recommenda-
tions.

6. Unusual or suspicious application behavior such as cre-
ating files.

7. Legitimate access request patterns. This information
can be used to derive profiles that describe typical be-
havior of users working with different applications.

The GAA-API can request a network-based IDS to re-
port, for example, indications of address spoofing. This in-
formation can be used in addition to the application level at-
tack signatures to further reduce the false positive rate and
avoid DoS attacks. This is particularly important for apply-
ing pro active countermeasures, such as updating firewall
rules and dropping connections.

The API can request information for adjusting policies,
such as values for thresholds, times and locations. The val-
ues may depend on many factors and can be determined by
a host-based IDS and communicated to the GAA-API.

4 The Apache Access Control

Apache’s access control system provides a method for
web masters to allow or deny access to certain URL paths,
files, or directories. Access can be controlled by requir-
ing username and password information or by restricting the
originating IP address of the client request. Access control
is usually confined to specific directories of the document
tree. When processing client’s request to access a document
Apache looks for an access control file called .htaccess in
every directory of the path to the document. Here is a sam-
ple .htaccess file:
�
This information can be used locally by modules that implement the

application level intrusion/misuse detection, as described in Section 7
and/or forwarded the information to IDSs for analysis.

Order Deny, Allow
Deny from All
Allow from 10.0.0.0/255.0.0.0
AuthType Basic
AuthUserFile /usr/local/apache2/.htpasswd-isi-staff
Require valid-user
Satisfy All
The “Allow from 10.0.0.0/255.0.0.0” allows connections
only from hosts within the specified IP range. All other
hosts will get a “Permission Denied” message. The “Re-
quire valid-user” requires that the user enter a username and
password. These username/password pairs are stored in a
separate file specified by the “AuthUserFile” directive.

5 Adding GAA-API to Enhance the Access
Control of the Apache Server

Unfortunately, the current version of Apache does not
support flexible fine-grained policies. Within the Apache
configuration file, the directive Satisfy All specifies that both
of the constraints on IP address and user authentication
should be satisfied to authorize an access request. Satisfy
Any means that the request will be granted if either of the
two constraints is met. However, these directives can not
express a policy with logical relations among three or more
constraints. Therefore, new semantics must be introduced
to specify a more flexible access control policy. Here are the
major advantages of the integration:

1. Besides making decisions of whether a request is ac-
cepted or rejected, the GAA-API libraries provide rou-
tines that can execute certain actions, such as log-
ging information, notifying administrator, etc. Fur-
thermore, the routines can be activated whether the
request succeeds/fails (when defined as request-result
conditions) or whether the requested operation suc-
ceeds/fails (when defined as post-conditions). Thus,
the GAA-API supports fine-tuning of the notification
and audit services.

2. The GAA-API is structured to support the addition of
modules for evaluation of new conditions. Web mas-
ters can write their own routines to evaluate conditions
or execute actions and register them with the GAA-
API. Moreover, the routines can be loaded dynami-
cally so that one does not need to recompile the whole
Apache package to add new routines.

3. The semantics of EACL format supported by the GAA-
API can represent all logical combinations of security
constraints.

4. The GAA-API supports adaptive security policies,
which detect security breaches and respond to attacks
by modifying security measures automatically.

2 22

System Configuration File

Initialize GAA-API

Build list of EACLs

System Policy File

Local Configuration File

Local Policy File

Post Execution Actions

Check Authorization

list of requested rights

registered routines
and internal stractures

Initialization

Phase

Request

request_rec Build list of requested rights

4

1

Per-request

Phases

Apache Modules

HTTP_DECLINED
HTTP_OK

list of EACLs

operation status

3 Execution Control

HTTP_AUTHREQUIRED

2.b

2.c

2.d

2.a

S

Sm

Translate access decision

p

Sa

Figure 1. GAA-Apache integration

6 GAA-Apache Access Control

The GAA-API is integrated into Apache by modifying
the ���
	���� ���� ������	���� function. The “glue” code extracts
the information about requests from the Apache core mod-
ules, initializes the GAA-API, calls the API functions to
evaluate policies, and finally returns access control decision
and status values to the modules. The GAA-Apache inte-
gration is shown in Figure 1. The GAA-API makes use of
system-wide and local configuration and policy files. The
configuration files list routines and parameters for evaluat-
ing conditions specified in the policy files. The system-wide
policy applies to all applications in the system. The local 3
status values:
1. authorization status ��� indicates whether the request is
authorized, not authorized or uncertain.
2. mid-condition enforcement status ��� .
3. post-condition enforcement status ��� .

The status values (����� � �"!$#%����� &(')#%����� *+���),-�) are
obtained during the evaluation of conditions in the relevant
EACL entries:
����� � �"! - all conditions are met;
����� &(' - at least one of the conditions fails;
����� *+���),-� - none of the conditions fails but there is at
least one condition that is left unevaluated. The GAA-API
returns ����� *+���",-� if the corresponding condition evalua-
tion function is not registered with the API.

1. Initialization phase. When the server daemon of
Apache starts, first the GAA-API is initialized by call-

ing ./��� ��0��213�4�65476	 and .8��� 0�	�9 ��� that extract and
register condition evaluation and policy retrieval rou-
tines from the system and local configuration files,
fetch the system policy file, and generate internal struc-
tures for later use.

2. The access control phase starts with receiving a re-
quest to access an object (e.g., HTML file or CGI
script).

(a) The ./��� ./	%1 :$;=<>	��=1 ?
:�54����@ ��0�A
: function is
called to obtain the security policies associated
with the requested object. The function reads the
system-wide policy file, converts it to the inter-
nal EACL representation and places it at the be-
ginning of the list of EACLs. Next, the function
retrieves and translates the local policy file and
adds it to the list. The system and local policies
are composed as described in Section 2.1.

(b) The request is converted into a list of requested
rights. The context information (e.g., system con-
figuration, server status, client status and the de-
tails of access request) that may be used by the
condition evaluation routines is extracted from
the �$	�B$C�	��%1 �$	�� structure and is added to re-
quested right structure as a list of parameters.
These parameters are classified with “type” and
“authority” so that GAA-API routines that eval-
uate conditions with the same type and authority
could find the relevant parameters.

2 23

(c) Next, the .8��� ����	��D� ��C�13��:$�$�476�E13�4:$0 function is
called to check whether the requested right is au-
thorized by the the ordered list of EACLs. This
function finds the EACL entries where the the re-
quested right appears and calls the registered rou-
tines to evaluate pre- and request-result condi-
tions in the entries. If there are no pre-conditions,
the authorization status is set to ����� � �"! . Oth-
erwise, the pre-conditions are evaluated and the
result is stored in the authorization status � � .
If the request-result conditions are present in the
entry, the conditions are evaluated and the inter-
mediate result is calculated. The conjunction of
the intermediate result and � � is stored in the au-
thorization status ��� .

(d) Finally, the status ��� is translated to the Apache
format and is passed to the Apache core mod-
ules as a return value of the ���
	���� ���� ������	����
function. ����� �-�"! is translated to FHG
G�I '�J
(Apache can grant the request). ����� &K' is trans-
lated to FLG�G�I ML� N�O/P%&Q�)M (Apache should reject
the request). In some cases, the ����� *+���",-�
is translated to FHG�GRI �)S�G�FUT�� V)S�P%T��-M , in other
cases to FLG�GRI ML�"N�O/P%&U�-M .

In particular, the ����� *+���",-� is used to enforce
adaptive redirection policies. Apache may use
the redirection for minimizing the network de-
lay, load balancing or security reasons. For ex-
ample, redirect to a replica server that is clos-
est to the client in terms of network distance.
The redirection policies encoded in the pre-
conditions specify, characteristics of a client, cur-
rent system state and URL that must serve the
client. With this setup, the GAA-API first checks
the pre-conditions that encode client’s informa-
tion and system state. The condition of type
pre cond redirect encodes the URL and is
returned unevaluated. When Apache receives
the FHG
G�I �)S�G�FUT�� V)S�P3T��-M , the server checks
whether there is only one unevaluated condition
of the type pre cond redirect and creates a
redirected request using the URL from the con-
dition value.

3. The execution control phase consists of starting the
operation execution process and calling the
.8��� 	�W�	���C�13��:$0 ��:$0X13�$:�5 function which checks if the
mid-conditions associated with the granted access right
are met. The result is returned in ��� . The implemen-
tation of this phase has not been completed yet.

4. During the post-execution action phase
the .8��� ?
:$�Y1 	�W�	��DC�13��:$0 ���=13��:$0�� function is called to

enforce the post-conditions associated with the granted
rights. This function performs policy enforcement af-
ter the operation completes by executing actions such
as notifying by email, modifying system variables,
writing log file, etc. The operation execution status
(indicating whether the operation succeeded/failed) is
passed to the .8��� ?
:$�Y1 	�W
	���C813�4:$0 ���=13��:$0�� . If no post-
conditions are found, ����� � �"! is returned, otherwise
the post-conditions are evaluated and the result is re-
turned in � � .

7 Deployments

In this section we describe several examples to illustrate
how our framework can be deployed to enable fine-grained
access control and intrusion detection and response.

7.1 Network Lockdown

We first show how our system adapts the applied authen-
tication policies to require more information from a user
when system threat level changes. Consider an organization
with the following characteristics:

Z Mixed access to web services. Access to some web re-
sources require user authentication, some do not.

Z An IDS supplies a system threat level. For example,
low threat level means normal system operational state,
medium threat level indicates suspicious behavior and
high threat level means that the system is under attack.

Z Policy: When system threat level is higher than low,
lock down the system and require user authentication
for all accesses within the network. Strong authentica-
tion protects against outside intruders. To some extent,
authentication may help to reduce insider misuse. In
particular, insiders are discouraged if the identity of a
user can be established reliably.

System-wide policy:
eacl mode 1 # composition mode narrow

EACL entry 1

neg access right * *

pre cond system threat level local =high

Local policy:
EACL entry 1

pos access right apache *

pre cond system threat level local >low
pre cond accessID USER apache *

The system-wide policy specifies mandatory requirement
“No access is allowed when system threat level is high” that

624

can not be bypassed by a local policy. The local policy spec-
ifies that all Apache accesses have to be authenticated if the
system threat level is higher than “low”.

7.2 Application level Intrusion Detection

We next show how the system supports prevention of
penetration and/or surveillance attacks by detecting a CGI
script abuse.
System-wide policy:
eacl mode 1 # composition mode narrow

EACL entry 1

neg access right * *

pre cond accessID GROUP local BadGuys

Local policy:
EACL entry 1

neg access right apache *

pre cond regex gnu ‘‘’*phf*’ ’*test-cgi*’’’

rr cond notify local

on:failure/email:sysadmin/info:CGIexploit
rr cond update log local

on:failure/BadGuys/info:IP

EACL entry 2

pos access right apache *

Entry 1 in the system-wide policy specifies mandatory re-
quirement that members of the group BadGuys are denied
access. Evaluation of the pre-conditionpre cond group
includes reading a log file of the suspicious IP addresses
and trying to find an IP address that matches the address
the request was sent from. Entry 1 in the local policy con-
tains a pre-condition pre cond regex that examines the
request for occurrence of regular expressions *phf* and
test-cgi. If no match is found, the GAA-API pro-
ceeds to the next EACL entry that grants the request.

If this condition is met, the request is rejected.
The rr cond notify condition sends e-mail to the sys-
tem administrator reporting time, IP address, URL at-
tempted and a threat type.
Next, the rr cond update log updates the group
BadGuys to include new suspicious IP address from the re-
quest.

New signatures can be specified using regular expres-
sions and numeric comparison. For example, the following
pre-condition detects a particular DoS attack:
pre cond regex gnu ’*///////////////////*’

Evaluation of this condition includes checking the request
for presence of a large number of ”/” characters that most
likely indicates an attempt to exploit a well-known apache
bug that slows down Apache and fills up logs fast.

The pre-condition pre cond regex gnu ’*%*’

detects malformed URLs (part of the URL contains the per-
cent character). This may indicate ongoing attack, such as

NIMDA. NIMDA exploits Microsoft IIS vulnerabilities by
sending a malformed GET request.

The pre-condition pre cond expr local >1000

checks that the length of input to a CGI script is no longer
than 1000 characters. This condition detects a buffer over-
flow attacks, e.g., Code Red IIS attack.

Adding suspicious hosts to the BadGuysmay allow our
system to stop attacks with unknown signatures. Often vul-
nerabilities are tested by scripts that generate a number of re-
quests. Each request exploits a particular bug. If the system
identifies requests from an address as matching known at-
tack signature, then subsequent requests from that host (ini-
tiated by the same script), checking for vulnerabilities we
might not yet know about, can still be blocked. Further,
since this blacklist is specified in a system-wide policy, the
list is shared by many of our hosts that improves security of
the system overall.

8 Performance

In our experiment, we used the system-wide and local
policy files shown in Sections 7.1 and 7.2, respectively. The
experiment was performed 20 times on a PC with an Intel
1.8GHz Pentium 4 CPU, running RedHat Linux v7.1.

On average, GAA-API functions took 5.9 milliseconds
(ms) without email notification (53.3 ms with email notifica-
tion) while running Apache functions including GAA-API
functions took 19.4 ms (66.8 ms with email notification).
The overhead introduced by the GAA-API is 30% if email
notification is not taken into account. If the email notifica-
tion is enabled, the overhead increases to 80%.

9 Implementation Status and Future Work

The GAA-API implementation is available at
http://www.isi.edu/gost/info/gaaapi/source.
The API has been integrated with several applications, in-
cluding Apache, sshd and FreeS/WAN IPsec for Linux.

To improve efficiency of the GAA-Apache integration
we will add support for caching of the retrieved and trans-
lated policies for later reuse by subsequent requests. We will
investigate a possibility of implementing a simple profile
building module and anomaly detector (implemented using
conditions) to support anomaly-based intrusion detection in
addition to the signature-based.

We plan to implement the execution control phase for
Apache. We will explore the utility of mid-conditions for
protection from untrusted downloaded code, such as Java
applets and Netscape plug-ins. The mid-conditions will
control actions of the downloaded content on a client ma-
chine throughout the execution of the content.

725

We plan to design a policy-controlled interface for estab-
lishing a subscription-based communication channels to al-
low GAA-API and IDSs to communicate.

10 Related Work

AppShield [5] is a proprietary policy-based system that
protects web servers. The AppShield intercepts and ana-
lyzes all requests and dynamically adjusts its security policy
to prevent attackers from exploiting application-level vul-
nerabilities. It uses dynamic policy not by looking for the
signatures of suspicious behavior but by knowing the in-
tended behavior of the site and rejecting all other uses of the
system.

Emerald architecture [2] includes a data-collection mod-
ule integrated with Apache Web server. The module ex-
tracts the request information internal to the Apache server
and forwards it to an intrusion detection component that an-
alyzes HTTP traffic.

Both AppShield and Emerald systems are designed
specifically for the web servers and can not be used for other
types of applications. In contrast, the GAA-API provides a
generic policy evaluation and an application-level intrusion
detection environment that can be used by different applica-
tions.

Almgren, et. al., [1] provide an overview of the occur-
rences of web server attacks and describe an intrusion de-
tection tool that analyzes the CLF logs. The tool finds and
reports intrusions by looking for attack signatures in the log
entries. However, the monitor can not directly interact with
a web server and, thus, can not stop the ongoing attacks.

11 Conclusions

Traditional access control mechanisms have little abil-
ity to support or respond to the detection of attacks. In this
paper we presented a generic authorization framework that
supports security policies that can detect attempted and ac-
tual security breaches and which can actively respond by
modifying security policies dynamically. The GAA-API
combines policy enforcement with application-level intru-
sion detection and response, allowing countermeasures to be
applied to ongoing attacks before they cause damage. Be-
cause the API processes access control request by applica-
tions, it is ideally placed to apply application-level knowl-
edge about policies and activities to identify suspicious ac-
tivity and apply appropriate responses.

12 Appendix

We use the Backus-Naur Form to denote the elements of our
EACL language. Items inside round brackets, () are optional.

Curly brackets, [�\ , surround items that can repeat zero or more
times. A vertical line, |, separates alternatives. Items inside dou-
ble quotes are the terminal symbols. An EACL is specified accord-
ing to the following format:
eacl ::= (composition mode) [entry\
entry ::= pright conds | nright

pre cond block rr cond block

pright ::= "pos access right" def auth value

nright ::= "neg access right" def auth value
conds ::= pre cond block rr cond block

mid cond block post cond block

pre cond block ::= [condition\
rr cond block ::= [condition \
mid cond block ::= [condition\
post cond block ::= [condition \
condition ::= cond type def auth value

composition mode ::= "0"|"1"|"2"

cond type ::= alphanumeric string

def auth ::= alphanumeric string

value ::= alphanumeric string

References

[1] M. Almgren, H. Debar, and M. Dacier.
A lightweight tool for detecting web server attacks.
In Proceedings of NDSS 2000, Network and Dis-
tributed System Security Symposium. The Internet So-
ciety, February 2000.

[2] M. Almgren and U. Lindqvist. Application-Integrated
Data Collection for Security Monitoring. Proceedings
of the Fourth International Symposium on the Recent
Advances in Intrusion Detection (RAID’2001), num-
ber 2212 in LNCS, pages 22-36, 2001.

[3] R. Bace and P. Mell.
Intrusion Detection Systems. NIST Special Publica-
tion on Intrusion Detection Systems. National Institute
of Standards and Technology, August, 2001.

[4] T. V. Ryutov and B. C. Neuman.
The Set and Function Approach to Modeling Autho-
rization in Distributed Systems.
In Proceedings of the Workshop on Mathematical
Methods and Models and Architecture for Computer
Networks Security, May 2001, St. Petersburg Russia.

[5] Sanctum, Inc. http://www.sanctuminc.com/

826

Dynamic Authorization and Intrusion Response in Distributed Systems

TatyanaRyutov, Clif ford NeumanandDonghoKim
InformationSciencesInstitute

Universityof SouthernCalifornia�
tryutov, bcn,dongho� @isi.edu

Abstract

This paper � presents an authorization framework for
supporting fine-grained access control policies enhanced
with light-weight intrusion/misuse detectors and response
capabilities. The framework intercepts and analyzes access
requests and dynamically adjusts security policies to prevent
attackers from exploiting application level vulnerabilities.

We present a practical, flexible implementation of the
framework based on the Generic Authorization and Access
Control API (GAA-API) that provides dynamic authoriza-
tion and intrusion response capabilities for many applica-
tions. To evaluate our approach, we integrated the API with
several applications, including Apache web server [12],
sshd and FreeS/WAN IPsec for Linux. This paper demon-
strates the integration of the GAA-API into ssh daemon. By
integrating the GAA-API into sshd, the ssh server can sup-
port fine-grained authorization policies, dynamic policy up-
date, and application level intrusion detection and response.
The server can also enforce policies with additional func-
tionalities, e.g., time- and location-based controls. Our ex-
periments showed that the required integration effort was
moderate, and that the performance impact on the ssh server
was negligible.

1 Introduction and Motivation

As moreandmoreenterprisesmaketheir critical infor-
mationavailableontheInternet,whetheronly to employees
or to customers,they areexposedto significantrisks such
astheft, fraud,anddenialof serviceattacks.In general,the
mostsignificantconsequencesresultfromattackswithin the
systemby otherwiselegitimateusers(or attackersposingas
suchusers)performingunauthorizedactivities.

�
Portionsreprinted,with permission,from T. V. RyutovandB. C. Neu-

man. TheSpecificationandEnforcementof AdvancedSecurityPolicies.
In theProceedingsof theConferenceon Policiesfor DistributedSystems
andNetworks(POLICY 2002). c

�
2002IEEE.

Detectingthesekindsof attackscanrequireinstrument-
ing applicationsto generateauditrecordsbasedon activity
thatis only understoodat theapplicationlayer.

Countermeasuresto suchattacksmustsimilarly be im-
plementedat theapplicationlayersthroughenforcementof
policiesthatcandistinguishlegitimateandillegitimateac-
tivities - a distinctionthat often requiresapplicationlevel
knowledge.

The policies themselvesmust automaticallyadapt to
meetthechangingsecurityrequirementsin theeventof pos-
sibleintrusionwhile allowingusersto operatein thechang-
ing environment.

Accesscontrol policies can assist in the application-
basedcategoryof intrusiondetection,whichmonitorscriti-
cal applications.Traditionalaccesscontrolpoliciessimply
specifywhethertheaccessis grantedor whethertherequest
is denied.A newpolicy specificationapproachwith intru-
siondetectionin mind (in additionto definingactionsthat
areandarenot permitted)will identify specificapplication
level eventsthat constitutemaliciousor suspiciousactivi-
ties. Furthermore,suchpolicieswill specify the counter-
measuresto betakento respondto thesuspectedor detected
attacks.

We apply dynamicauthorizationtechniquesto support
fine-grainedaccesscontrol and application level intru-
sion/misusedetectionandresponsecapabilities.

Ourapproachis basedonspecifyingaccesscontrolpoli-
ciesextendedwith the capabilityto identify (andpossibly
classify)intrusionsandrespondtotheintrusionsin realtime.
TheGenericAuthorizationandAccessControlAPI (GAA-
API) is a genericinterfacewhich may be usedto enable
suchdynamicauthorizationandintrusionresponsecapabil-
ities for manyapplications.TheAPI supportsthreepolicy
enforcementphases:

1. Before requestedoperationstarts; to decidewhether
thisoperationis authorized.

2. Duringtheexecutionof theauthorizedoperation;tode-
tectmaliciousbehaviorin realtime(e.g.,auserprocess
consumesexcessivesystemresources).

 27

goodelle
Text Box
Appendix C:

3. Whentheoperationis completed;to activatepostexe-
cutionactions,suchasloggingandnotificationwhether
theoperationsucceeds/fails.

Thispaperdemonstratestheintegrationof theGAA-API
into sshdaemon. By integratingthe GAA-API into sshd,
the sshservercansupportfine-grainedauthorizationpoli-
cies,dynamicpolicy update,andapplicationlevel intrusion
detectionandresponse.The servercanalsoenforcepoli-
cieswith additionalfunctionalities,e.g.,time-andlocation-
basedcontrols. Our experimentsshowedthat the required
integrationeffort wasmoderate,andthat the performance
impactonthesshserverwasnegligiblewith relativelysmall
configurationandpolicy files.

2 Approach

An authorization policy regulatesaccessto objects.An
object is a targetof requestsandit hasto beprotected,e.g.,
critical programs,files andhosts.An access right (alterna-
tive wordsthatweuseareoperationandaction)is a partic-
ular typeof accessto a protectedobject,e.g.,reador write.
Specificsystemevents,suchasrestartingor shuttingdown
thesystem,systemlog-in andlog-off canbemodeledasac-
cessrightsassociatedwith thesystem,wherethesystemis
the protectedobject. A condition describesthe contextin
whicheachaccessright is grantedor denied.

In ourframework,apolicy is representedasasetof con-
ditionsassociatedwith apositiveornegativeaccessright. If
all conditionsassociatedwith apositiverightaremet,theac-
cessto atargetobjectis granted.If all conditionsassociated
with a negativeright aremet,theaccessis denied.

Traditionalsecuritysystemslack adaptivesecuritypoli-
ciesandenforcementmechanisms.In thenon-adaptiveset-
ting, thesetof policiesis chosenin advance,beforetheac-
cessrequestis received.Theadaptivepolicy enforcement
mechanismchoosesthe appropriatesetof policiesduring
thecourseof computationbasedonthecurrentsystemstate.

Usually, adaptivepolicy implementationrequireseither
thereloadingof thepolicy or changingthepolicy computa-
tionalgorithms[3]. Bothof theseapproachesareineffective
andnot scalable.

Our approachavoidspolicy reloadingandswitchingto
thedifferentpolicy evaluationmode:

1. Thepolicy specificationdescribesmorethanonesetof
disjointpolicies.

2. Thepolicy evaluationmechanismis extendedwith the
ability to readandwrite systemstate.Theimplemen-
tation is basedon conditionsthatprovidesupportfor
monitoringandupdatinginternalsystemstructuresand
their runtimebehaviors.

With theextendedpolicy evaluationmechanism,transi-
tion betweenthedisjoint setsof policiesis regulatedauto-
maticallyby readingthesystemstate(e.g.,thetime of day,
or systemthreatlevel). Thedownsideof thisapproachis the
requirementfor moretediousandcarefulpolicy specifica-
tion anddealingwith thesideeffectsof thepolicy evalua-
tion.

The adaptivepoliciesarespecifiedusingdifferentcon-
ditionsthatpermitrun-timeadaptationin theeventof pos-
siblesecurityattacks.To enforcetheadaptivepolicieswe
adoptedthe three-phasepolicy enforcementscheme.Dur-
ing eachphaseonly thespecifiedsetof all conditionsin the
policy is evaluated.

2.1 Conditions

Herewe list severalof the moreusefulconditions[10]
thatassistin detectingandrespondingto intrusionandmis-
useandtheyallow moreefficientutilizationof securityser-
vices,suchasauthentication,audit,andnotification.

� access identity

This conditionspecifiesanauthenticatedaccessiden-
tity.

� strength of authentication

This condition specifies the authenticationmecha-
nismor setof suitablemechanismsfor authentication.
Stronguserauthenticationmethod(e.g.,Kerberos[11])
canbeactivatedin responseto suspiciousbehavior.

� time

This conditionspecifiestime periodsfor whichaccess
is granted.

� location

This conditionspecifieslocationof the user. Autho-
rization is grantedto the usersresiding on specific
hosts,domains,or networks.

� payment

Thisconditionspecifiesacurrencyandanamountthat
mustbepaidprior to accessinganobject.

� quota

This conditionspecifiesa currencyanda limit. It lim-
its thequantityof a resourcethatcanbeconsumedor
obtained.

� audit

This conditionenablesautomaticgenerationof audit
datain responseto accessrequests.An audit record
shouldincludesufficient informationto establishwhat
eventoccurredandwhatcausedtheevent.

28

� notification

This conditionenablesautomaticgenerationof notifi-
cationmessages(alerts)in responseto accessrequests.
Theconditionvaluespecifiesthereceiverandthenoti-
ficationmethod.

� threshold

Thisconditionspecifiesallowablethreshold.

� system threat level

Thisconditionspecifiesthesystemthreatlevel.

Failure of someof theseconditionsmay signal suspi-
ciousbehavior. For example,accessis requestedat unex-
pectedtimesor unusuallocations,violationsof userquotas,
repeatedfailure of accessattemptsandexceedinga thresh-
old. Someconditionscantriggerdefensivemeasuresin re-
sponseto perceivedsystemthreatlevel. For example,im-
posea limit on resourceconsumption,advancedpayment
for theallocatedresourcesor increasedauditing.In thecase
of insidermisuse(particularlyif the intruder’s identity has
beenestablished)it maybeappropriatetolet theattackscon-
tinueunderspecialconditions.For example,it maybede-
sirableto initiate datacollectionmechanismsto gatherde-
tailed informationaboutuseractivitiesthat couldserveas
evidencefor possibleprosecutions.

Thecombinationof conditionsof differenttypescanbe
usedto fine tuneaudit andnotification services. The au-
dit detail andnumberof alarmsshouldbe sensitiveto the
systemthreatprofile. For example,low systemthreatlevel
shouldresultin reducedalarmlevel andamountof gener-
atedaudit data. It shouldalsodependon thesensitivityof
therequestedoperationandtargetobject.

2.1.1 Evaluation of Conditions

Note that in the implementation,someof theseconditions
might havesideeffects. For example,evaluationof pay-
ment conditionreducesa balance.Evaluationof notifica-
tion conditionresultsin sendingamessage,whichis useful
in audit.

A positiveaspectof thesideeffectsis theability toupdate
systembehaviorat run time (e.g.,generatingaudit records
andreconfiguringfirewall rules).Suchdynamictechniques
will ensurethatpoliciesappliedto systemservicesadaptto
perceivedsystemthreatprofile, therebyincreasingsystem
protection.

Unfortunately, sideeffectscomplicatematters.Thereare
two particulardifficulties in reasoningaboutpolicies en-
forcedin thedynamicauthorizationenvironment.

First,thesideeffectsmightcauseproblemswhentheside
effectscreatea feedbackloop, e.g.,whenpaymentaffects
quotaswhichaffectstheability to performotheroperations
(onceonerunsoutof money).

Second,policyrulescanincludebothenvironmentalcon-
ditionsandactionsthatchangetheconditions.Forexample,
an audit conditionmay trigger a network threatdetection
conditionwhichaffectstheevaluationof subsequentcondi-
tions in thepolicy. Therefore,theconsistencyandcorrect-
nessof theaccesscontroldesicionsmaydependonthecon-
dition evaluationorder.

In our currentframework,theconditionevaluationpro-
cessis totally ordered.Theorderhasto beassessedbefore
conditionevaluationstarts.Determiningtheevaluationor-
deringis currentlydoneby apolicy officer.

We recognizethatthefunctionof definingthecondition
ordercanbebestservedby anautomatedtool to ensurepol-
icy correctnessandconsistencyandto easethepolicy spec-
ificationburdenon thepolicy officer. Seesection8 for fur-
therdiscussion.

2.1.2 Pre-, Mid-, Post- and Request-result Conditions

An authorizationpolicymayspecifyconditionsthatmustbe
satisfiedbefore,duringor aftertheaccessright is exercised.
Furthermore,evaluationof someconditionsmustbe acti-
vatedwhethertheaccessis grantedor whethertherequest
is denied.Thus,all conditionsareclassifiedas:

� pre-conditions specifywhat mustbe true in orderto
grantor denytherequest.

� request-result conditions mustbe activatedwhether
theaccessrequestis grantedor whethertherequestis
denied.

� mid-conditions specify what must be true during
the executionof the requestedoperation. The mid-
conditionscanbeusedfor theprotectionof thecritical
operationsandresources.The mid-conditionsallow
for realtimeactivemonitoringof theoperationexecu-
tion andresponse.If any of the mid-conditionsfails,
the operationexecutionmustbe affected. The coun-
termeasuresaredefinedin theresponsemethodsof the
target object. Aggressiveresponsesmay include di-
rectcountermeasures,suchasclosingtheconnections
or suspendingthe processes.This is importantto en-
force countermeasuresagainstseriousattacks. For
example,a processesconsumingexcessivesystemre-
sources(CPUtime, memory, anddisk space)may in-
dicateimpendingdenialof serviceattack. More pas-
siveresponsesmayincludetheactivatingof integrity-
checkingroutinesto verify the operatingstateof the
target.

Themid-conditionsthatweconsiderin ourframework
arelimited to a setof thresholds,suchasdurationof
connection,CPUandmemoryusageandseveritymet-
rics (e.g.,currentsystemthreatlevel).

 29

� post-conditions areusedto activatepostexecutionac-
tions,suchasloggingandnotificationwhethertheop-
erationsucceedsor whetherthe operationfails. The
post-conditionscanbespecifiedin two ways:

1. Thepost-conditionsthatareactivatedonly if the
requestedoperationsucceeds.Theseconditions
areusefultocorrectlyimplementtheenforcement
of, for example,thepayment/quotaconstraints.

Herearesomeexamplesof thepolicieswith post-
conditions:

“A usermustpay $1 to reada file. The money
mustbewithdrawnfromtheuseraccountonlyaf-
tersuccessfulfile access.”

In thispolicy, thepayment conditionmustbeim-
plementedas a post-condition. If the file read
fails for technicalreasons(the servercrashesin
the middle of the readoperation),the payment
conditionis not activatedand the userdoesnot
losehismoney.

“A useris allowedto accessfile � only once.”

Similarly, thequota conditionin thispolicymust
beimplementedasapost-conditiontoensurethat
theusercanaccessthefile at leastonce.

2. Thepost-conditionsthatareactivatedonly if the
requestedoperationfails. Forexample,failureof
criticaloperations,suchassystemshutdownmay
indicatedenialof serviceattackandrequireim-
mediatenotification.

Thepost-conditionsalongwith therequest-resultcondi-
tionsareusefulto fine tuneauditandnotificationservices.

2.2 The Three-Phase Policy Enforcement

Theenforcementof theadaptivesecuritypoliciesis par-
titionedinto threesuccessivephases.

1. Phaseone:accesscontrol.
The pre- and request-resultconditionsare evaluated
duringthisphaseandthedecisionto grantor denyac-
cessto therequestedobjectis made.

2. Phasetwo: executioncontrol.
Theaccessto thetargetobjectis granted,therequested
operationis startedandthe mid-conditionsareevalu-
atedduringthisphase.Thisphaseallowsthecontrolled
executionof therequestedoperation.

3. Phasethree:post-executionactions.
The post-conditionsare evaluatedduring this phase.
Thespecifiedactionsareperformedaftertheoperation
is finished. We do not call this phase“post-execution

control”, sinceneither failure nor successof a post-
executionactioncanaffect eitheraccessdecision,or
operationexecution.

3 Implementation

In thissectionwepresenttheoverviewof ourimplemen-
tationapproach.

3.1 Policy Representation

Thepolicy languageweimplementedis calledExtended
AccessControl List (EACL). The EACL is a simple lan-
guagedesignedto describeuser-level securitypoliciesthat
governaccessto protectedresources,identify threatsthat
mayoccurwithin applicationandspecifyintrusionresponse
actions.An EACL isassociatedwith anobject(oragroupof
objects)to beprotectedandspecifiespositiveandnegative
accessrightswith optionalsetof associatedconditionsthat
describethecontextin whicheachaccessright is grantedor
denied.

A condition block definesa conjunctionof a totally or-
deredsetof conditions.Conditionsareevaluatedin theor-
dertheyappearwithin aconditionblock� .

An EACL entry consistsof apositiveor negativeaccess
rightandfourconditionblocks:asetof pre-conditions,aset
of request-resultconditions,a setof mid-conditionsanda
setof post-conditions.Note thata conditionblock canbe
empty. If all conditionblocksin anEACL entryareempty,
theright is grantedunconditionally. An exampleof apracti-
calpolicy with emptyconditionblocksis: “anyonecanread
file �
	������� ������� ”.

An EACL consistsof an orderedset of disjunctive
EACL entries. An EACL representationsupportsdisjunc-
tion andconjunctionof conditionsto activatedifferentcon-
trol modes.

An EACL is equivalentto disjunctivenormalform con-
sistingof a disjunctionof conjunctionswhereno conjunc-
tion containsa disjunction.For example,a policy “Tom or
Joecanreadfile � only if theyconnectfrom *.isi.edudo-
main” canberepresentedby anEACL (attachedto thefile
�) with two EACL entries:
“positiveaccessright: read,pre-conditions:Tom,*.isi.edu”
“positiveaccessright: read,pre-conditions:Joe,*.isi.edu”.

3.1.1 EACL Syntax

WeusetheBackus-NaurFormto denotetheelementsof our
EACL language.Curlybrackets,��� , surrounditemsthatcan

�
Thetotal orderpropertyis importantto dealwith possiblesideeffects

causedby theconditionevaluation.

30

repeatzeroor moretimes. A vertical line, |, separatesal-
ternatives.Itemsinsidedoublequotesaretheterminalsym-
bols. An EACL is specifiedaccordingto thefollowing for-
mat:
eacl ::= � eacl entry�
eacl entry ::= pos access right conditions |
neg access right pre cond block
pos access right ::= "pos access right"
def auth value
neg access right ::= "neg access right"
def auth value
conditions ::= pre cond block mid cond block
rr cond block post cond block
pre cond block ::= � condition�
mid cond block ::= � condition�
rr cond block ::= � condition �
post cond block ::= � condition �
condition ::= cond type def auth value
cond type ::= alphanumeric string
def auth ::= alphanumeric string
value ::= alphanumeric string

cond type definesthe type of condition,e.g.,access
identityor time.
def auth indicatestheauthorityresponsiblefor defin-

ing thevaluewithin thecond type, e.g.,Kerberos.
value is thevalueof condition. Its semanticsis deter-

minedby the cond type field. The namespacefor the
valueis definedby thedef auth field.

Note that theEACL syntaxallowsonly thepre-conditions
to be associatedwith a negativeright. This is becausean
EACL entry with a negativeright cannevergrantthe ac-
cess,therefore,themid-andpost-conditionsin theentrywill
neverbeevaluated.

Wenextpresentanexampleof anEACL thatgovernsac-
cessto a host.

Entry1 specifiesthatusertom@ORGB.EDUcannot login
to thehost.

Entries2 and3 meanthatuserJoecanshutdownthehost
usingeitherX509or Kerberosfor authentication.If there-
questsucceeds,theuserID mustbelogged.If theoperation
fails, thesystemadministratormustbenotifiedby e-mail.

Entry 4 meansthat anyone,without authentication,can
checkthe statusof the host if heconnectsfrom the speci-
fiedIP addressrange.

Entry5specifiesthatuserken@ORGA.EDUcanlogin from
thespecifiedIP addressrange,if thenumberof previouslo-
ginattemptsduringthedaydoesnotexceed3. If therequest
fails, the numberof the failed logins for the usermustbe
updated.Theconnectiondurationtime mustnot exceed8

hours.

EACL for host malta.isi.edu

EACL entry 1
neg access right test host login

pre cond access id USER Kerberos5

tom@ORGB.EDU

EACL entry 2
pos access right test host

shut down

pre cond access id USER X509

"/C=US/O=Trusted/OU=orgb.edu/CN=Joe"

rr cond audit local on:success/userID
post cond notify local

on:failure/admin/userID

EACL entry 3

pos access right test host shut down

pre cond access id USER Kerberos5
joe@ORGB.EDU

rr cond audit local on:success/userID

post cond notify local

on:failure/admin/userID

EACL entry 4

pos access right test host check status

pre cond location IP 10.1.1.0-10.1.2.255

EACL entry 5
pos access right test host login

pre cond access id USER Kerberos5

ken@ORGA.EDU

pre cond location IP 10.1.1.0-10.1.2.255

pre cond threshold local
3failures/day/failed log

rr cond update log local

on:failure/failed log/userID

mid cond duration local

8hrs

Evaluationof an EACL startsfrom the first to the last in
thelist of EACL entries.Theresolutionof inconsistentau-
thorizationis basedon ordering.Theentrieswhichalready
havebeenexaminedtakeprecedenceovernewentries.

An orderedevaluationapproachiseasierto implementas
it allowsonly partial evaluationof an EACL andresolves
theauthorizationconflicts.Theproblemwith thisapproach
is thatit requirestotalorderingamongauthorizations.It re-
quirescarefulwriting of theEACL by thesecurityadminis-
trator.

31

3.2 Generic Authorization and Access-control
API(GAA-API)

TheGAA-API providesageneral-purposeexecutionen-
vironmentin whichEACLsareevaluated.Wenextprovide
a brief descriptionof themainGAA-API functions.

The !#"$" !#%� &('*)+-,*� ./&��0�
,21 �
	�34& function is called to
obtainthesecuritypolicyassociatedwith theobject.It takes
thetargetobjectandauthorizationdatabaseasinputandre-
turnsanorderedlist of EACLs.

Theapplicationmaintainsauthorizationinformationin a
form understoodby the application. It canbe storedin a
file, database,directoryserviceor in someotherway. The
application-specificfunctionprovidedfor theGAA-API re-
trievesthepolicy informationandtranslatesit into theinter-
nal representationunderstoodby the GAA-API. Currently
thepolicy is written at theobjectlevel, thecall-backfunc-
tionmustcollectall theperobjectpoliciesandorderthemby
priority. How thepoliciesarestoredandretrievedis opaque
to theGAA-API andis not reflectedin theEACL.

Theresultingpolicy that is passedto the GAA-API for
evaluationrepresentsthe combinationof severalpolicies
possiblyfrom differentdomainsandindividualusersof the
system.

The specific mechanismfor retrieving the policies is
passedto theGAA-API asa call-backfunction.TheGAA-
API providesamechanismto registeraparticularpolicy re-
trieval call-backfunction. Currently this is doneusing a
configurationfile.

The structureof the policy domainsthat contributethe
policiesis not specifiedexplicitly in our framework. Only
thehierarchicalrelationship(priority of thepolicy) among
the domainsis takeninto consideration.Our currentim-
plementationsupportstwo level policy specification:first,
system-widepoliciesareretrievedandplacedin thebegin-
ning of the list of policies. Thenthe local policiesarere-
trievedandareaddedto thelist. Thus,system-widepolicies
implicitly havehigherpriority thanlocal policies. For fur-
therdiscussionof thepolicy compositionsee[12].

The !#"$" ,5�4�,26 "$7����4&(8(�
9+":���
&(functioncheckswhether
therequestedright is authorizedunderthespecifiedpolicy.
This function takesthe retrievedpolicy (anorderedlist of
EACLs),requestedaccessright andcontextualinformation
asinput. Thecontextualinformationis matchedto there-
quirements,specifiedin theconditionsof therelevantEACL
entries(only theEACL entrieswherethetherequestedright
appearsareevaluated).This informationcanberepresented
by a set of credentials,e.g.,an X.509 identity certificate.
The output lists all matchingpolicy rights and associated
conditions,with flagssetto indicatewhethereachcondition
wasevaluatedand/ormet. If theaccessis granted,theout-
put includesthetimeperiodfor which theresultis valid.

The !�"$" -�/-,57$���
&(,2&(;��8(&�� functionperformspolicy

enforcementduring operationexecution. This function
checks whether the mid-conditionsassociatedwith the
grantedaccessright aremet.

The !�"$" .4&(<=� -�/�,27$���
&("$,*���
&(�< functionperforms
policyenforcementaftertheoperationcompletes.Thisfunc-
tionenforcesthepost-conditionsassociatedwith thegranted
access.

An EACL mayspecifyconditionsof differenttypes,e.g.,
access identity, location andaudit. The GAA-API sup-
portsregisteringconditionevaluationfunctionsfor different
conditiontypes.

Theconfigurationfile listsconcretefunctionsthatimple-
menttheconditions.Thefile is readattheGAA-API initial-
izationtimeandthefunctionsareregisteredwith thespecific
conditions(takingintoaccounttheconditiontypeanddefin-
ing authorityfields). To evaluateconditionsin the EACL
examplegivenearlier, wemight registerupto 8 functions>
with theGAA-API. TheGAA-API is structuredto support
theadditionof modulesfor evaluationof newconditions.

TheGAA-API returnsthreestatusvaluestodescribepol-
icy enforcementprocess:

1. authorizationstatus?�@ .
Indicateswhethertherequestis authorized(ACB�B DFEHG),
notauthorized(ACB�B IKJ) or uncertain(A�B�B L�B�DFMNE).

2. mid-conditionenforcementstatus?/O .
Indicatesthe evaluationstatusof the mid-conditions
(A�B�B DFEHG(P%A�B�B IQJNP%ACB�B L�B�DNM�E).

3. post-conditionenforcementstatus?$R .
Indicatesthe evaluationstatusof the post-conditions
(A�B�B DFEHG(P%A�B�B IQJNP%ACB�B L�B�DNM�E).

The statusvaluesareobtainedduring the evaluationof
conditionsin therelevantEACL entries:
A�B�B DFEHG - all conditionsaremet;
A�B�B IQJ - at leastoneof theconditionsfails;
A�B�B L�B�DFMNE - noneof the conditionsfails but thereis at
leastoneconditionthatis left unevaluated.

TheGAA-API returnsACB�B L�B�DFMNE if thecorresponding
conditionevaluationfunctionis notregisteredwith theAPI.
In somecases,it is convenientto returnsomeof thecondi-
tionsunevaluatedfor furtherevaluationby thecallingappli-
cation.

4 The GAA/ssh Integration

Secureshell(ssh)is beingwidelydeployedbecauseof its
featuresthatensuresecurecommunicationsacrossthenet-S

Dependingon the implementation,we may registereither one or
two functions to evaluateconditionsof the sametype but with differ-
entdefiningauthorityfields,e.g.,T-U2V WYX*Z$[\-WYWYV*]^] _`[acb$dceFfhg%i2j andT-U2V WYX*Z�[\-WYWYV*]^] _k[alb$dceFmhVYU2nYVYU2X%]^g .

32

work aswell asits easeof use.However, correctlyconfig-
uring theserver(sshd)with desiredpoliciesis not aneasy
task,becausetheauthorizationpoliciesaredescribedin the
serverconfigurationfile thatcontainsnot only thepolicies
but alsotheconfigurationparametersfor the server. Host-
ing two separatefunctionalitiesinto oneconfigurationfile
leadsto theproblemof havinginflexible mechanismof de-
scribingauthorizationpolicies. In addition,the serverhas
to be restartedafter modifying the contentof the configu-
rationfile to reflectchanges.If themodificationwasdone
to changethepolicy, insteadof thetheconfigurationof the
server, restartingtheserverwould prohibit thedynamicre-
sponseof theserverto thepotentialor actualnetworkthreat
conditions.

4.1 The Policy Enforcement Process

TheGAA-API wasintegratedinto Openssh
version2.9p2 (http://www.openssh.org). The integration
contributedonly about250linesof “glue” code.Only two
files auth2.candserverloop.cweremodifiedandonenew
file gaa-plug.c(containingtheGAA-API initialization and
accesscontrolcalls)wasadded.

The GAA-API is integratedinto sshby modifying the
74<�-8("$7���� 8(*.#�
1 functionin thefile auth2.c.Thefile server-
loop.c was modified to supportthe executioncontrol and
post-executionphases.TheGAA/sshintegrationis shown
in Figure1.

TheGAA-API makesuseof system-wideandlocalcon-
figurationandpolicy files. Theconfigurationfiles list rou-
tinesandparametersfor evaluatingconditionsspecifiedin
the policy files. The system-widepolicy appliesto all ap-
plicationsin thesystem.Thelocalpolicy describessecurity
requirementsof sshd.

1. Theinitialization phase.

Whenthe sshdstarts,first theGAA-API is initialized
by calling !#"�" �0	��k���0"��0�
9+ and!#"�" 	��o <�, thatextract
andregisterconditionevaluationandpolicy retrieval
routinesfrom thesystemandlocal configurationfiles,
fetchthesystempolicyfile, andgenerateinternalstruc-
turesfor lateruse.

2. Theaccess control phase startswith receivinga con-
nectionrequest.

(a) The !#"�" !#%� &('*):�,*� ./&��0�0,51 �0	�3/& functionis
called to obtain the securitypolicies associated
with the target host. The function readsthe
system-widepolicy file, convertsit to theinternal
EACL representationandplacesit at the begin-
ning of thelist of EACLs. Next, thefunctionre-
trievesandtranslatesthelocalpolicyfile andadds
it to thelist.

(b) The requestis convertedinto a list of requested
accessrights. The authenticateduser identity
is extractedfrom the "7���/,*����� structureand is
placedin the !�"$" <-, securitycontextstructure.

(c) Next, the !#"�" ,2�/�,26 "7���/&(8(�
9+":���0&(function is
calledto checkwhethertherequestedright is au-
thorizedby theorderedlist of EACLs. Thisfunc-
tion finds the EACL entrieswhere the the re-
questedright appearsandcallstheregisteredrou-
tines to evaluatepre- and request-resultcondi-
tionsin theentries.If therearenopre-conditions,
theauthorizationstatusis setto A�B�B DFEFG . Oth-
erwise,the pre-conditionsareevaluatedandthe
resultis storedin theauthorizationstatus?�@ .
If therequest-resultconditionsarepresentin the
entry, theconditionsareevaluatedandtheinter-
mediateresultis calculated.Theconjunctionof
theintermediateresultand ? @ is storedin theau-
thorizationstatus? @ .
Basedon theauthorizationstatus?�@ theconnec-
tion is permittedor rejectedasfollows:
G(plq�A�B�B DFEHG connectionis allowed.
G(plq�A�B�B IQJ connectionis rejected.
G(plq�A�B�B L�B�DFMNE connectionis rejected.
Thedetailedinformationis returnedthat lists all
matchingpolicy rightsandassociatedconditions,
with flagssetto indicatewhethereachcondition
wasevaluatedand/ormet.

3. The execution control phase consistsof startingthe
connectionand calling the !�"$" -�/�,27$���
&(,2&(;��8(&��
function. This function checks whether the mid-
conditionsassociatedwith the grantedaccessrights
aremet. If mid-conditionsare found, the conditions
areevaluated.Somemid-conditionsareevaluatedjust
once r , other mid-conditionsareevaluatedin a loop
until either the operationfinishesor any of the mid-
conditionsfails. In thelattercase,theoperationexecu-
tion is suspendedandthe reactiveactionsarestarted.
Themid-conditionscanbereturnedunevaluatedto be
enforcedby application.Theresultis storedin ? O .

4. During thepost-execution action phase the
!�"$" .4&(<=� ��4�,27����0&("�,����0&(�< functionis calledto en-
force the post-conditionsassociatedwith the granted
rights. This functionperformspolicy enforcementaf-
ter theoperationcompletesby executingactionssuch
as notifying by email, modifying systemvariables,
writing log file, etc.

Theconnectionstatus(indicatingwhethertheconnec-
tion succeeded/failed)is passedto the

s
E.g.,lockingafile to placeaholdon useraccount.

33

 of EACLslist

1

4

Build list of requested rights
Request

and internal stractures
registered routines

list of requested rights

Check Authorization

Post Execution Actions

Local Policy File

Local Configuration File

System Policy File

Build list of EACLs

Initialize GAA−API

System Configuration File

operation status

aS

Initialization P
hase

P
er−

request P
hases

authctxt

user_auth_finish()

user_auth_reply()

server_loop()

SSHD

p

mS

S

2.a

2.c

2.b

Execution Control3

Figure 1. GAA/ssh integration.

!�"$" .4&(<=� -�/�,27$���
&("$,*���
&(�< function. If no post-
conditionsarefound, A�B�B DNEFG is returned,otherwise
the post-conditionsareevaluatedandthe result is re-
turnedin ? R .

5 Deployments

In this sectionwe illustratehow our frameworkcanbe
deployedto enablefine-grainedresponseto attacks.

5.1 Network Lockdown

This scenariodemonstrateshow our systemadaptsthe
appliedauthenticationpoliciesto requiremoreinformation
fromauserwhenpotentiallydangerousactivityhasbeende-
tected.

This scenariois designedfor organizationswith thefol-
lowing characteristics:

� Mixed accessto webservices.Accessto somewebre-
sourcesrequireuserauthentication,somedo not. If a
policy doesnot requireauthenticateduseridentity, au-
thenticationstepscanbeignoredor deferreduntil the
policy explicitly requestsit. An exampleof a policy,
whichis notconcernedwith theidentityis ”anyonecan
readfile � if $10is paid”.

� AuthenticatedsshconnectionsfromtheInternetareal-
lowedto accesshostsontheorganization’sLAN.

� A network-basedIDS suppliesa systemthreatlevel.
Forexample,low threatlevelmeansnormalsystemop-
erationalstate,medium threatlevelindicatessuspicious
behaviorandhigh threatlevelmeansthatthesystemis
underattack.

� Policy: When system threat level is higher than
low, one needs to lock down the system and require
user authentication for all accesses within the LAN.
Strongauthenticationprotectsagainstoutsideintrud-
ers.To someextent,authenticationmayhelpto reduce
insidermisuse.In particular, insidersarediscouraged
if theidentityof a usercanbeestablishedreliably.

The policy requirementscanbe representedby the fol-
lowing EACL thatprotectsall sshandwebserverconnec-
tionswithin theLAN:
EACL entry 1
pos access righ apache *

pre cond system threat level local >low

pre cond access id USER apache *

EACL entry 2
pos access righ ssh *

pre cond system threat level local >low

pre cond access id USER ssh *

34

The pre-conditionsin EACL entries1 and2 meanthat all
Apacheandsshaccesseshaveto beauthenticatedif thesys-
temthreatlevelis higherthanlow. Currentlytheimplemen-
tationof thepre cond system threat level condi-
tion retrievssystemthreatlevel from a specificfile.

5.2 Application Level Intrusion Detection

We next demonstratehow our frameworkprovidesreal
time applicationlevel intrusion/misusedetectioncapabili-
ties. This exampledemonstratesdetectionandresponseto
a particularDoSattack: openinga largenumberof simul-
taneousconnectionsto thesshserverstarvesthenumberof
availablesockets,disallowingnewconnects.

Assumethat EACLs that governhostswithin the LAN
containthefollowing EACL entry:
pos access right ssh host login
pre cond access id USER X509 *

pre cond threshold local

20/user sessions

rr cond notify local

on:failure/admin/ssh,DoS

rr cond update log local
on:failure/failed log/userID

mid cond update log local

user sessions/userID+1

post cond update log local

on:success/user sessions/userID-1

Evaluationof thepre cond access id USER
assertsa proper user authentication. The pre-condition
pre cond threshold readsthe log of active sessions
to determinethe numberof sessionswith theuserID field
equalto theonein theuserID credentials.

If thenumberis greaterthan20, therequestis rejected.
Therr cond notify conditionsendse-mail to thesys-
tem administratorreportingtime, usernameand a threat
type. Next, the rr cond update log updatesthe log
of failed logins to include a new suspicioususer ID. If
the numberof suchsessionsis lessthan20, the requestis
granted,theconnectionis establishedandthemid-condition
mid cond update log is evaluated.This conditionis
evaluatedjustonce,it updatesthenumberof activesshcon-
nectionsfor theuser. After aconnectionis closed,thepost-
conditionpost cond update log updatesthe number
of connectionsreducingit by 1.

6 Performance

7 Related Work

The Policy Maker systemdescribedin the papersby
Blaze et al. [1], [2] focuseson constructionof a practi-

cal algorithm for a determiningtrust decisions. Policies
andcredentialsencodetrustrelationshipsamongtheissuing
sources.

In Policy Maker’s terminology, ”proof of compliance
question”asksif the requestt , supportedby a setof cre-
dentialscomplieswith a policy u . This is equivalentto the
authorizationquestionthatweconsiderin ourwork: ”is re-
questt authorizedby thepolicy u (in ourmodelthecreden-
tials arecontainedin the request)”. Their approach,how-
ever, is differentfrom ours.

In ourapproach,theinformationpassedto theauthoriza-
tion enginewith theauthorizationrequestis usedto evalu-
ateconditionsin therelevantpolicy statements.Theorder
of conditionevaluationis important.

ThePolicyMakersystemis basedonthelogic program-
ming approach.Thegoal is to infer thedesiredconclusion
from given assumptionsin a computationallyviable man-
ner. In Policy Maker, thecredentialsandpolicy (calledas-
sertions)areusedcollectively to computea proof of com-
pliance.Theassertionscanberun in anarbitraryorderand
produceintermediateresultsthat thencanbefed into other
assertions.

Hayton and colleagues[5] proposeda role-basedac-
cesscontrolsystemcalledOASIS.OASISservicesspecify
policy for role activationusingRole Definition Language
(RDL) that is definedin termsof axiomsin proof system.
Theseaxiomsareusedto proveuser’s eligibilit y to entera
setof roles.

A rolecanbespecifiedasbeingpermittedonly for those
whocanprovemembershipof otherrolesissuedby thisand
otherservices.Theservicesareresponsiblefor issuingcer-
tificates,verifying theirvalidity andnotifying otherservices
aboutthe certificatestatechanges.A policy definesa set
of conditionsunderwhich a usercanactivatea role. The
role revocationis accomplishedthroughmembershipcon-
ditions. Someof themembershipconditionsmustcontinue
to holdwhile theroleremainsactive.If anyof themember-
shipconditionsassociatedwith theactivatedrole fails, the
role is deactivated.In somesense,theOASISmembership
conditionsaresimilar to our mid-conditionsthatmusthold
duringoperationexecution.

RDL is notasgenericandexpressiveasourapproachand
not as well suitedto representingcomplexaccesscontrol
policiesandthosethatincludemandatoryaccesscontrol.

Policies,representablein PolicyMakerandRDL, arere-
strictedto thesetof policieswhich do not producesideef-
fects,resultingin changeof thesystemstate.

Ponder[4] is anobject-orientedpolicy specificationlan-
guagethatis sutedfor role-basedaccesscontrolpolicies,as
well asgeneral-purposemanagementpolicies.Ponderis tar-
getedfor differenttypesof policies,includingobligations,
authorizations,delegationandfiltering policies,andgroup-
ing thesepoliciesinto aggregatestructures.Theobligation

35

policies, for example,specifywhat actions(e.g.,notifica-
tion or logging)arecarriedout whenspecificeventsoccur
within the system. To someextent,the request-resultand
post-conditionsin our frameworkservea similar purpose.
However, thereareseveralsignificantdifferencesbetween
Ponder’s andour approaches.First, in our frameworkall
securityrequirementsareexpressedin asinglepolicy struc-
ture,whereasin thePonderapproachauthorizationandobli-
gationpoliciescanbe specifiedindependently. Thesecan
leadto conflictsbetweenthetwo policy types.Second,the
policy in ourframeworkisenforcedbythesameaccesscon-
trol mechanism.Thethree-phasepolicyenforcementmodel
allows for partsof policy (particularconditions)to be en-
forcedatdifferenttimes.In contrast,thePonderusesasep-
arateenforcementmechanismfor eachpolicy type.

Finally, the Ponderobligationpoliciesaretriggeredby
systemeventswhereasin ourframeworktheactionsaretrig-
geredby otherconditionsin thesamepolicy, suchasthresh-
old or systemthreatlevel.

MinskyandUngureanu[8], [9] definethepolicy in terms
of messagesthatonlyarestrictedsetof agentsispermittedto
exchange.Furthermore,themessageexchangeis controlled
by asetof rulesthatis includedin thepolicy. Thepolicyen-
forcementmechanismis basedonasetof trustedagentsthat
interprettherulesandenforcethemby regulatingthemes-
sageexchangesandtheeffect thatthemessageshaveonthe
controlstate(attributesandpermissions)of theparticipating
agents.

Theability to communicateandchangethestateresem-
blesour conceptof thereadandwrite conditions.Our ap-
proachis differentin that the“state” hasa wider meaning.
It includesall security-relevantinformationaboutrealworld
which is representablein a computersystem,e.g.,bankac-
countbalance,temperatureanduseridentity. Anotherdif-
ferenceis thatthereadingandwriting of thestateisbasedon
theorderedsynchronousevaluationof theconditions,rather
thancontrolledmessageexchange.

Jajodiaetal. [6] haveproposedalogical languagefor the
specificationof authorizations.The concernsaddressedin
this work areorthogonalto the onesin this paper. In par-
ticular, theyfocusonmodelingconflict resolution,integrity
constraintcheckingandderivationrules(thatderiveimplicit
authorizationsfrom explicit ones),while our work focuses
ontherepresentationandenforcementof authorizationpoli-
ciesenhancedwith detectionandmanagementof security
violations.

Summaryof the researchof audit-basedintrusion and
misusedetectionis givenby Lunt [7]. SandhuandSama-
rati [13] discussauthentication,accesscontrolandintrusion
detectiontechnologiesandsuggestthatcombinationof the
techniquesis necessaryin orderto build asecuresystem.

8 Conclusions and Future Work

Traditionalauthorizationmechanismscheckwhethera
user is acting within prescribedparametersand will not
detectabuseof privileges. In this paperwe presentedan
authorizationframeworkthatenablesthe specificationand
enforcementof workablesecuritypolicies that governac-
cessto protectedresources,identify threatsthatmayoccur
within applicationandspecify intrusion responseactions.
TheGAA-API combinespolicy enforcementwith applica-
tion level intrusiondetectionandresponse,allowing coun-
termeasuresto be appliedto ongoingattacksbefore they
causedamage.TheGAA-API implementationis available
athttp://www.isi.edu/gost/info/gaaapi/source.
TheGAA-API hasbeenintegratedwith severalappli-
cations, including Apache web server [12], sshd and
FreeS/WAN IPsecfor Linux.

Currently, the GAA-API integratedsshdobtainspartof
thepolicy fromtheoriginalsshdconfigurationfile (tomain-
tain the backwardcompatibility) and usesthe policy file
specifedin EACL formatto supplementtheexistingpolicy.
We planto improvetheGAA/sshintegrationto completely
takeovertheauthorizationphaseof sshd.

In thecurrentframework,weassumethatconditionsare
evaluatedconsecutivelyandthat authorizationrequestsdo
not overlap. Thesetwo assumptionsenableus to concen-
trateonasingleconditionevaluationpereachtime interval
and,therefore,avoidtheproblemof coordinationof multi-
pleconditionevaluationprocesses.However, thisapproach
resultsin inefficient policy evaluationprocessandleadsto
systemsthatcannotscaleto largenumbersof objects.

The future directionsfor this researchinclude explor-
ing extensionsto theframeworkto support:concurrentre-
quests;replicationof theevaluationmechanism;concurrent
evaluationof conditionswithin the samerequest;anddis-
tributedpolicy enforcement.

At this point, theissuesof spatialandtemporalrelation-
shipsamongthepolicy computationsbecomecritical. Poli-
ciesthatgovernthesameobjectmayhavenon-trivial inter-
dependencieswhichmustbecarefullyanalyzedandunder-
stood.

Anotherlimitation of the currentframeworkis reliance
on a policy administratorfor definingconditionevaluation
orderwhich is thenenforecedby the framework.Thelim-
ited awarenessof the spatial and temporaldependencies
amongsecuritypoliciesmaycauseinconsistenciesandun-
desirablesystembehavior. In many cases,administrators
maynot havea clearpictureof the ramificationsof policy
enforcementactions,therforeenforcingthesepoliciesmight
haveunexpectedinteractiveor concurrentbehaviour. Au-
tomationis essentialto minimisehumanerror, and it can
only be usedsafelywhenthereis a formal model thatex-
plicitly addressesboth thespatialandthe temporalaspects

36

of dynamicauthorization.
Weaim to developaformal modelwhichcanbeusedto

createpolicieswith strongsecurityguarantees,eliminating
guessworkin thedesignanddeploymentof adaptivesecu-
rity policies.

9 Acknowledgments

Effort sponsoredby the DefenseAdvancedResearch
ProjectsAgency (DARPA) and Air ForceResearchLab-
oratory, Air Force Materiel Command,USAF, and the
Xerox Corporationunder the following agreements:(1)
F30602-00-2-0595, Dynamic Policy Evaluationof Con-
taining Network AttacksProject(DEFCN); (2) DABT63-
94-C-0034,Security Infrastructurefor Large Distributed
SystemsProject (SILDS); (3) J-FBI-95-204,Global Op-
erating System TechnologiesProject (GOST); (4) DE-
FC03-99ER25397,Diplomat project;and (5) HE1254-97,
XAUTH Project.

TheU.S.Governmentis authorizedto reproduceanddis-
tributereprintsfor Governmentalpurposesnotwithstanding
any copyrightannotationthereon. The views andconclu-
sionscontainedhereinarethoseof the authorsandshould
not be interpretedas necessarilyrepresentingthe official
policiesor endorsements,eitherexpressedor implied,of the
DefenseAdvancedResearchProjectsAgency (DARPA),
theAir ForceResearchLaboratory, U.S.Departmentof En-
ergy, theU.S.Governmentor theXerox Corporation.Fig-
uresanddescriptionswereprovidedby theauthorsandare
usedwith permission.

References

[1] M. Blaze,J.FeigenbaumandJ.Lacy.
DecentralizedTrustManagement.
Proceedings IEEE Symposium on Security and Pri-
vacy, IEEEComputerPress,Los Angeles,pages164-
173,1996.

[2] M. Blaze,J.FeigenbaumandM. Strauss.
ComplianceCheckingin thePolicyMakerTrustMan-
agementSystem. In Proceedings of the Financial
Cryptography ’98, Lecture Notes in Computer Sci-
ence, volume1465,pages254-274.

[3] M. CarneyandB. Loe.
A Comparisonof Methodsfor ImplementingAdaptive
SecurityPolicies.In Proceedings of the 7th USENIX
Security Symposium, pages1-14,January, 1998.

[4] N.Damianou,N. Dulay, E. LupuandM. Sloman.
The PonderPolicy SpecificationLanguage.In Pro-
ceedings of the Workshop on Policies for Distributed

Systems and Networks, Springer-VerlagLNCS 1995,
pages18-39,Bristol, UK, January, 2001.

[5] R. J.Hayton,J.M. BaconandK. Moody.
OASIS:AccessControlin anOpen,DistributedEnvi-
ronment.
Proceedings of the IEEE Symposium on Security and
Privacy, pages3-14,Oakland,CA, May 1998.

[6] S.Jajodia,P. SamaratiandV.S.Subrahmanian.
A logical Languagefor ExpressingAuthorizations.
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, 1997.

[7] T. F. Lunt.
A Surveyof IntrusionDetectionTechniques.
Computers and Security, volume12, pages405-418,
June1993.

[8] N. Minsky andV. Ungureanu.
Unified Supportfor HeterogeneousSecurityPolicies
in DistributedSystems.
In 7th USENIX Security Symposium, San Antonio,
Texas,January1998.

[9] N. Minsky andV. Ungureanu.
Law-GovernedInteraction: A Coordination& Con-
trol Mechanismfor HeterogeneousDistributedSys-
tems.In ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol 9, No 3, pages273-
305,July2000.

[10] B.C.Neuman.
Proxy-basedauthorizationand accountingfor dis-
tributedsystems.
In Proceedings of the 13th International Conference
on Distributed Computing Systems, Pittsburgh, May
1993.

[11] B.C.NeumanandT. Ts’o.
Kerberos:An authenticationservicefor computernet-
works.
IEEE Communications Magazine, pages 33-38,
September1994.

[12] T. V. Ryutov, B. C. Neuman,Li Zhou and Dongho
Kim.
IntegratedAccessControlandIntrusionDetectionfor
WebServers.
In Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems, Providence,
RhodeIsland,May 2003.

[13] R. SandhuandP. Samarati.
Authentication,AccessControl,andIntrusionDetec-
tion.

37

The Computer Science and Engineering Handbook,
pages1929-1948,CRCPress,1997.

38

The Specification and Enforcement of Advanced Security Policies

Tatyana Ryutov and Clifford Neuman
Information Sciences Institute

University of Southern California�
tryutov, bcn � @isi.edu

Abstract

In a distributed multi-user environment, the security pol-
icy must not only specify legitimate user privileges but also
aid in the detection of the abuse of the privileges and adapt
to perceived system threat conditions.

This paper advocates extending authorization policy
evaluation mechanisms with a means for generating audit
data allowing immediate notification of suspicious applica-
tion level activity. It additionally suggests that the evalua-
tion of the policies themselves adapt to perceived network
threat conditions, possibly affected by the receipt of such au-
dit data by other processes.

Such advanced policies assist in detecting and respond-
ing to intrusion and misuse and they allow more efficient uti-
lization of security services, such as authentication, audit,
and notification.

We present an authorization framework, which enables
the representation and enforcement of advanced security
policies. Our approach is based on expanding the policy
evaluation mechanism with the ability to generate real time
actions, such as checking the current system threat level and
sending a notification.

1 Introduction and Motivation

As more and more enterprises make their critical infor-
mation available on the Internet, whether only to employ-
ees or to end-customers, they are exposed to significant risks
such as theft, fraud, and denial of service attacks. In general,
the most significant consequences result from attacks within
the system by otherwise legitimate users (or attackers posing
as such users) performing unauthorized activities.

Detecting these kinds of attacks can require instrument-
ing applications to generate audit records based on activity
that is only understood at the application layer.

In addition to having a means to detect attacks (the role
of an intrusion detection system) it is essential to have well
defined policies that indicate what to do under perceived at-

tack conditions, or for that matter under suspicion of attack
conditions so that data can be gathered to make an actual de-
termination of whether an attack is present.

Countermeasures to such attacks must similarly be im-
plemented at the application layers through enforcement of
policies that can distinguish legitimate and illegitimate ac-
tivities - a distinction that often requires application level
knowledge.

While users might not be prevented from using resources
to which they have legitimate access, protective measures,
such as audit analysis along with the threshold control can
be used to examine user actions. Consider an authorization
policy: “Members of department � can access the printer � .
If the number of print jobs created during the day is higher
than 20, activate audit to log time, file and account names”.
In this policy the threshold is used to detect suspicious use
of resources. An audit log can reveal that an individual is
printing far more records than the average user, which could
indicate the running of a covert business.

The policies themselves must automatically adapt to
meet the changing security requirements in the event of pos-
sible intrusion while allowing users to operate in the chang-
ing environment. For example, consider authorization pol-
icy: “Tom can connect to host �����
	����������� ����� if the system
threat level is low (normal operational state). If the system
threat level is medium (indicates suspicious behavior), Tom
can connect only from a host within the administrative do-
main ������������� . The connection duration time should not ex-
ceed 2 hours. If the system threat level is high (system is
under attack), Tom can not connect.”

Current access control systems are based on the premise
that once a user is authorized to perform some operation, the
access is granted unconditionally. This practice is not likely
to detect the abuse of user privileges. To provide additional
level of security checks, close monitoring of authorized ac-
tions may be necessary. Policies can be applied to control-
ling execution of the requested actions.

The points of the policy enforcement may include three
time phases:

1. Before requested operation starts; to decide whether

39

goodelle
Text Box
Appendix D:

this operation is authorized.

2. During the execution of the authorized operation; to de-
tect malicious behavior in real-time (e.g., a user process
consumes excessive system resources).

3. When the operation is completed; to activate post exe-
cution actions, such as logging and notification whether
the operation succeeds/fails.

To protect sensitive and critical system resources in dis-
tributed environments, a system must be capable of support-
ing advanced security policies:

1. The policies must be adaptive � to accommodate
changes in the security requirements and assist in de-
tecting and responding to intrusion and misuse. To do
so, the policies should indicate not only what activi-
ties are authorized, but also provide the means to de-
tect abuse of user privileges. In particular, the policy
should specify when audit records should be generated
and allow for immediate notification.

2. Policy enforcement can be required at various time
stages of the requested action. Thus, the policies
should indicate when the policy has to be enforced.

The ability to enforce advanced policies has practical im-
portance, for example, in computational Grids [5]. Grids are
large-scale distributed computing environments that enable
applications to use scientific instruments, computational and
information resources that are managed by diverse organiza-
tions.

System administrators contributing their resources to a
Grid will require assurance that the resources are adequately
protected. In a Grid setting, the security requirements in-
clude:

1. User authentication.
Authenticated user identity is used to determine who
gains access to local resources � .

2. Resource usage limits (quotas).
A site-specific resource allocation policy specifies lim-
its on the computational or storage resources to be con-
sumed, such as CPU load, memory usage and disk
space. The limits are taken into account when deciding
whether to initiate the requested computation. Mon-
itoring execution of the computation on a particular
node must be supported to ensure that the process keeps
strictly to the limits imposed by the local policy.�

The term “adaptive” in this paper is used to indicate that the security
policy to be enforced depends on the current state of the system, e.g., sys-
tem load, system threat level or time of day (more restrictive organizational
policy may be enforced during after hours).�

Mutual authentication may be required to prove the server identity to
the user.

3. Accounting and payment.
Owners of the resources may hold users accountable
for the consumed resources. Accounting may in-
clude gathering information about executed computa-
tions and consumed resources. The accounting infor-
mation can be used in payment models for remote ser-
vice providers.

4. Audit.
Audit can provide a means to help accomplish individ-
ual accountability and provide data to be analyzed by
intrusion or misuse detection systems.

5. Intrusion and misuse detection.
Grids are vulnerable to a large-scale malicious attacks
that could cause disruption of the Grid services. Thus,
it is essential for Grids to support detection and auto-
matic response to intrusion attempts.

6. Event notification.
Tools for intrusion detection and fault tolerance can be
driven by event services. Alert-level notification mes-
sages permit cooperative responses. For example, no-
tification about a computation that exceeds the quotas
can signal ongoing denial of service attack. The ade-
quate preventive measures can be taken if the attack is
confirmed.

Authentication, authorization, audit, notification and in-
trusion detection systems are interrelated and should be used
together to support effective system security.

The goal of this work is to design an authorization system
that supports the advanced security policies.

2 Approach

An authorization policy regulates access to objects. An
object is a target of requests and it has to be protected, e.g.,
critical programs, files, hosts and print jobs.

An access right (alternative words that we use are opera-
tion, action and permission) is a particular type of access to a
protected object, e.g., read or write. Specific system events,
such as restarting or shutting down the system, system log-in
and log-off can be modeled as access rights associated with
the system, where the system is the protected object.

A condition describes the context in which each access
right is granted.

In our framework, a policy is represented as a set of con-
ditions associated with the access right. All conditions must
be satisfied in order to allow an operation to be performed
on a target object � .

Our framework supports negative rights. If all conditions associated
with the negative right are met, the access is denied.

40

Traditional security systems lack adaptive security poli-
cies and enforcement mechanisms. In the non-adaptive set-
ting, the set of policies is chosen in advance, before the ac-
cess request is received. The adaptive policy enforcement
mechanism chooses the appropriate set of policies during
the course of computation based on the current system state.

Adaptive policy implementation requires either the
reloading of the policy or changing the policy computation
algorithms [3]. Both of these approaches are ineffective and
not scalable.

Our approach avoids policy reloading and switching to
the different policy evaluation mode:

1. The policy specification describes more than one set of
disjoint policies.

2. The policy evaluation mechanism is extended with the
ability to read and write system state. The implemen-
tation is based on read and write conditions that pro-
vide support for monitoring and updating internal sys-
tem structures and their runtime behaviors.

With the extended policy evaluation mechanism, transi-
tion between the disjoint sets of policies is regulated auto-
matically by reading the system state (e.g., the time of day,
or system threat level). The downside of this approach is the
requirement for more tedious and careful policy specifica-
tion and dealing with the side effects of the policy evalua-
tion.

The advanced policies are specified using different con-
ditions that permit run-time adaptation in the event of possi-
ble security attacks. To enforce the advanced security poli-
cies we adopted the three-phase policy enforcement scheme.
During each phase only the specified set of all conditions in
the policy is evaluated.

2.1 Conditions

Here we list several of the more useful conditions [13]
that assist in detecting and responding to intrusion and mis-
use and they allow more efficient utilization of security ser-
vices, such as authentication, audit, and notification.

! access identity

This condition specifies an authenticated access iden-
tity. If a policy does not require authenticated user
identity, authentication steps can be ignored or deferred
until the policy explicitly requests it. An example of a
policy, which is not concerned with the identity is ”any-
one can read file " if $10 is paid”.

! strength of authentication

This condition specifies the authentication mecha-
nism or set of suitable mechanisms for authentication.

Strong user authentication method (e.g., Kerberos [14])
can be activated in response to suspicious behavior.

! time

This condition specifies time periods for which access
is granted.

! location

This condition specifies location of the user. Autho-
rization is granted to the users residing on specific
hosts, domains, or networks.

! payment

This condition specifies a currency and an amount that
must be paid prior to accessing an object.

! quota

This condition specifies a currency and a limit. It lim-
its the quantity of a resource that can be consumed or
obtained.

! audit

This condition enables automatic generation of audit
data in response to access requests. An audit record
should include sufficient information to establish what
event occurred and what caused the event.

! notification

This condition enables automatic generation of notifi-
cation messages (alerts) in response to access requests.
Specifies the receiver and the notification method.

! threshold

This condition specifies allowable threshold.

! system threat level

This condition specifies the system threat level.

Failure of some of these conditions may signal suspi-
cious behavior. For example, access is requested at unex-
pected times or unusual locations, violations of user quotas,
repeated failure of access attempts and exceeding a thresh-
old. Some conditions can trigger defensive measures in re-
sponse to perceived system threat level. For example, im-
pose a limit on resource consumption, advanced payment
for the allocated resources or increased auditing. In the case
of insider misuse (particularly if the intruder’s identity has
been established) it may be appropriate to let the attacks con-
tinue under special conditions. For example, it may be de-
sirable to initiate data collection mechanisms to gather de-
tailed information about user activities that could serve as
evidence for possible prosecutions.

41

The combination of conditions of different types can be
used to fine tune audit and notification services. The au-
dit detail and number of alarms should be sensitive to the
system threat profile. For example, low system threat level
should result in reduced alarm level and amount of gener-
ated audit data. It should also depend on the sensitivity of
the requested operation and target object.

2.1.1 Evaluation of Conditions

Note that in the implementation, some of these conditions
might have side effects. For example, evaluation of pay-
ment and quota conditions reduce a balance. Evaluation of
notification condition results in sending a message, which
is useful in audit.

Unfortunately, side effects complicate the system. Ignor-
ing the side effects might cause problems when the side ef-
fects create a feedback loop, for example, when an audit
record triggers a network threat detection which affects the
evaluation of subsequent policies, or where payment affects
quotas which affects the ability to perform other operations
(once one runs out of money).

Another problem caused by the side effects, is possi-
ble inconsistency of the authorization result. For exam-
ple, consider a policy “Tom can shut down host # only if
a notification is sent (notification) and system threat
level is low (system threat level:low)”. Assume
that the current system threat level is low. Assume that
the notification about Tom shutting down the host triggers
high system threat level (this may indicate attempted de-
nial of service attack). There are two ways to evaluate
the conditions: first system threat level:low then
notification. This evaluation order results in access
grant. Another way is to evaluate notification condi-
tion first then system threat level:low. This eval-
uation order results in the denial of the access.

All side effects of the condition evaluation are recorded
in the corresponding system variables. At the lowest level, a
system variable is an abstraction for bits or bytes in the sys-
tem that change as the result of system execution. For exam-
ple, to model a system variable affected by the evaluation of
the notification condition (a message must be sent), we need
better level of abstraction. Thus, a system variable is an ab-
stract notion of a system entity that represents a data item,
e.g., a file, a message or a record in a database. Each system
variable has a name and a value.

We assume that there exists a set of software components$
. Each software component �&%��(' $*)

can access system
variables of particular type. For example, a system variable,
which represents a file is accessed by a file system. A sys-
tem variable, which represents a notification is accessed by a
notification protocol, or a transport protocol, such as e-mail
or http.

We assume that each software component � has abstract+ �,��� and -/.0�1	�� operations as a part of its functionality.
The read operation �2� + �,���%43)

returns the value of the sys-
tem variable 3 . The write operation �2�5-/.0�1	��2%6387�9 :;��<)
assigns a new value 9 :;�,< to the system variable 3 .

2.1.2 Read and Write Conditions

At the conceptual level, all conditions can be categorized as:

! Conditions that require reading some system variable
and comparing it with the information specified in the
policy. For example, evaluation of the time condi-
tion requires obtaining current time and checking if it
fits into the time interval specified in the policy. We
call this category of conditions read conditions. A
read condition is represented as 38=?>� , where 3 is the
name of a system variable, � is a constant and =?> is the
operation (e.g., @ , A@ , B , C) to be performed on the
value of the system variable 3 and the constant � . In
implementation, this value maybe either obtained from
the request or read using the ��� + �����D%63)

operation dur-
ing the condition evaluation.

! Conditions that require writing some information (e.g.,
audit) or initiating some action (e.g., notification). We
call this category of conditions write conditions. A
write condition is represented as 38:;��< 9��2���D� , where3 is the name of the system variable and :;��< 9������D�
is the new value to be assigned.

An obvious relationship between the read and write condi-
tions is if one condition requires reading of a system vari-
able, which is written by the other condition. In our frame-
work, the condition evaluation process is totally ordered.
The order has to be assessed before condition evaluation
starts. Determining the correct order of the conditions in
the policy statement is an important issue. Human judgment
is a necessary component in this process. We feel that the
function of defining the condition order can be best served
by having the policy officer chose a meaningful condition
order. In particular, whether the write conditions must be
evaluated before the read conditions. The goal of the sys-
tem is to faithfully implement the given organizational se-
curity policy.

2.1.3 Pre-, Mid-, Post- and Request-result Conditions

An authorization policy may specify conditions that must
be satisfied before, during or after the access right is exer-
cised. Furthermore, evaluation of some conditions must be
activated only if the authorization request is granted (or de-
nied).

42

Thus, all conditions are classified as:

! pre-conditions specify what must be true in order to
grant the request. This means that the requested oper-
ation is allowed to be executed on the target object. If
any of the pre-conditions fails, authorization is denied.

! request-result conditions
These conditions must be activated whether the autho-
rization request is granted or whether the request is de-
nied.

! mid-conditions specify what must be true during
the execution of the requested operation. The mid-
conditions can be used for the protection of the critical
operations and resources. The mid-conditions allow
for real time active monitoring of the operation execu-
tion and response. If any of the mid-conditions fails,
the operation execution must be affected. The coun-
termeasures are defined in the response methods of the
target object. Aggressive responses may include di-
rect countermeasures, such as closing the connections
or suspending the processes. This is important to en-
force counter measures against serious attacks. For
example, a processes consuming excessive system re-
sources (CPU time, memory, and disk space) may in-
dicate impending denial of service attack. More pas-
sive responses may include the activating of integrity-
checking routines to verify the operating state of the
target.

The mid-conditions that we consider in our framework
are limited to a set of thresholds, such as duration of
connection, CPU and memory usage and severity met-
rics (e.g., current system threat level).

! post-conditions specify what must be true on the com-
pletion of the operation execution. The post-conditions
can be specified in two ways:

1. The post-conditions that are activated only if the
requested operation succeeds. These conditions
are useful to correctly implement the enforcement
of, for example, the payment/quota constraints.
Here are some examples of the policies with post-
conditions:

“A user must pay $1 to read a file. The money
must be withdrawn from the user account only af-
ter successful file access.”

In this policy, the payment condition must be im-
plemented as a post-condition. If the file read
fails for technical reasons (the server crashes in
the middle of the read operation), the payment
condition is not activated and the user does not
lose his money.

“A user is allowed to access file " only once.”

Similarly, the quota condition in this policy must
be implemented as a post-condition to ensure that
the user can access the file at least once.

2. The post-conditions that are activated only if the
requested operation fails. For example, failure of
critical operations, such as system shut down may
indicate denial of service attack and require im-
mediate notification.

The post-conditions along with the request-result condi-
tions are useful to fine tune audit and notification services.

2.2 The Three-Phase Policy Enforcement

The enforcement of the advanced security policies is par-
titioned into three successive phases.

1. Phase one: access control.
The pre- and request-result conditions are evaluated
during this phase and the decision to grant or deny ac-
cess to the requested object is made.

2. Phase two: execution control.
The access to the target object is granted, the requested
operation is started and the mid-conditions are evalu-
ated during this phase. This phase allows the controlled
execution of the requested operation.

3. Phase three: post-execution actions.
The post-conditions are evaluated during this phase.
The specified actions are performed after the operation
is finished. We do not call this phase “post-execution
control”, since neither failure nor success of a post-
execution action can affect either access decision, or
operation execution.

3 Implementation

In this section we present the overview of our implemen-
tation approach.

3.1 Policy Representation

The policy language that we implemented is called Ex-
tended Access Control List (EACL). The EACL is a sim-
ple policy language designed to describe user-level autho-
rization policy. An EACL is associated with an object (or a
group of objects) to be protected and specifies positive and
negative access rights with optional set of associated condi-
tions.

43

A condition block defines a conjunction of a totally or-
dered set of conditions. Conditions are evaluated in the or-
der they appear within a condition block E .

An EACL entry consists of a positive or negative access
right and four condition blocks: a set of pre-conditions, a set
of request-result conditions, a set of mid-conditions and a
set of post-conditions. Note that a condition block can be
empty. If all condition blocks in an EACL entry are empty,
the right is granted unconditionally. An example of a practi-
cal policy with empty condition blocks is: “anyone can read
file ��:;����FG��HI	��(� ”.

An EACL consists of an ordered set of disjunctive
EACL entries. An EACL representation supports disjunc-
tion and conjunction of conditions to activate different con-
trol modes.

An EACL is equivalent to disjunctive normal form con-
sisting of a disjunction of conjunctions where no conjunc-
tion contains a disjunction. For example, a policy “Tom or
Joe can read file " only if they connect from *.isi.edu do-
main” can be represented by an EACL (attached to the file") with two EACL entries:
“positive access right: read, pre-conditions: Tom, *.isi.edu”
“positive access right: read, pre-conditions: Joe, *.isi.edu”.

More precise EACL syntax and an example are given in
the Appendix.

Evaluation of an EACL starts from the first to the last in
the list of EACL entries. The resolution of inconsistent au-
thorization is based on ordering. The authorizations which
already have been examined take precedence over new au-
thorizations.

An ordered evaluation approach is easier to implement as
it allows only partial evaluation of an EACL and resolves
the authorization conflicts. The problem with this approach
is that it requires total ordering among authorizations. It re-
quires careful writing of the EACL by the security adminis-
trator.

3.2 Generic Authorization and Access-control
API(GAA-API)

The GAA-API provides a general-purpose execution en-
vironment in which EACLs are evaluated. Next we provide
a brief description of the main GAA-API functions.

The JK��� JK�?	 =0L�M2�,N�	 >=�����NPO ��:;QD= function is called to
obtain the security policy associated with the object. It takes
the target object and authorization database as input and re-
turns an ordered list of EACLs.

The application maintains authorization information in a
form understood by the application. It can be stored in a
file, database, and directory service or in some other way.
The application-specific callback function provided for theR

The total order property is important to deal with possible side effects
caused by the condition evaluation.

GAA-API retrieves the policy information and translates it
into the internal representation understood by the GAA-API.
Currently the policy is written at the object level, the call-
back function must collect all the per object policies and or-
der them by priority. How the policies are stored and re-
trieved is opaque to the GAA-API and is not reflected in the
EACL.

The resulting policy that is passed to the GAA-API for
evaluation represents the combination of several policies
possibly from different domains and individual users of the
system. The specific mechanism for retrieving the policies
is passed as a call-back function.

The GAA-API provides a mechanism to register a par-
ticular policy retrieval call-back function. Currently this is
done using a configuration file.

The structure of the policy domains that contribute the
policies is not specified explicitly in our framework. Only
the hierarchical relationship (priority of the policy) among
the domains is taken into consideration. Our current im-
plementation supports two level policy specification: first,
system-wide policies are retrieved and placed in the begin-
ning of the list of policies. Then the local policies are re-
trieved and are added to the list. Thus, system-wide policies
implicitly have higher priority than local policies.

The JI��� NPHD��NPS ���I	�HD=0.0��T2�U	���=0: function checks whether
the requested right is authorized under the specified policy.
This function takes the retrieved policy (an ordered list of
EACLs), requested access right and contextual information
as input. The contextual information is matched to the re-
quirements, specified in the conditions of the relevant EACL
entries (only the EACL entries where the the requested right
appears are evaluated). For example, this information can
be represented by a set of credentials, e.g., an X.509 identity
certificate. The output lists all matching policy rights and as-
sociated conditions, with flags set to indicate whether each
condition was evaluated and/or met. If the access is granted,
the output includes the time period for which the result is
valid.JI��� �,F��NP��	���=0: NP=0:V	�.0=�� performs policy enforcement
during operation execution. This function checks whether
the mid-conditions associated with the granted access right
are met.JI��� >D=0�W	 �,F��NP��	���=0: ��N�	���=0:;� performs policy enforce-
ment after the operation completes. This function enforces
the post-conditions associated with the granted access.

A policy statement may specify several conditions of
different types. For example: “Tom can read file " only
between 9am and 6pm”. This policy defines two pre-
conditions: access identity and time. Both conditions are
read conditions (there are two system variables to be read:
user access identity and current time).

The GAA-API supports registering condition evaluation
functions for different condition types.

44

The configuration file lists concrete functions that imple-
ment the conditions. The file is read at the GAA-API initial-
ization time and the functions are registered with the specific
conditions. In our policy example we define two functions:
one to check the access identity and the other one to check
the time. The read vs. write distinction shows up implicitly
in the condition type. A condition evaluation function reg-
istered with a condition type knows whether the condition
is read or write. It then parses the condition value and calls
the concrete functions that implement the abstract

+ �,��� and-/.0�
	�� operations described in Section 2.1.1. The system
variables manipulated by the

+ �,��� and -/.0�
	�� operations,
as well as the operations themselves can be ether local or re-
mote. However, our framework requires that the

+ ����� and-/.0�
	�� operations must be implemented as atomic actions.
The GAA-API is structured to support the addition of mod-
ules for evaluation of new conditions.

The JI��� NPHD��NPS ���I	�HD=0.0��T2�U	���=0: ,JI��� �,F�,NX��	���=0: NP=0:V	�.0=�� and JK��� >=0�?	 ��F�,NP�I	���=0: ��N�	���=0:;�
functions return the evaluation status Y[Z2\[ZI] .

This status is obtained during the evaluation of conditions
in the relevant EACL entries:Y indicates that all conditions are met;\ indicates that at least one of the conditions fails;] indicates that none of the conditions fails but there is at
least one condition that is left unevaluated.

Uncertainty] is introduced into our framework by lack
of adequate information to evaluate the condition. For
example, a condition may depend on an event that has
yet to happen. This means that the value of the system
variable returned by the implementation of the abstract�2� + �,���%43)

operation is undefined. Another source of un-
certainty is inability to find the corresponding condition
evaluation function, for example if the function (��� + �����%43)
or ���^-/.0�1	���%4387?9 :;��<)) is not implemented or not regis-
tered with the GAA-API. Sometimes, it is convenient to re-
turn some of the conditions unevaluated for further evalua-
tion by the calling application.

3.3 The Policy Enforcement Process

The GAA-API returns three status values to describe pol-
icy enforcement process:

1. authorization status
$;_

.
Indicates whether the request is authorized (Y), not au-
thorized (\) or uncertain (]).

2. mid-condition enforcement status
$`

.
Indicates the evaluation status of the mid-conditions
(Y[Z2\[ZI]).

3. post-condition enforcement status
$�a

.
Indicates the evaluation status of the post-conditions
(Y[Z2\[ZI]).

Initially the status values are set to] .

1. The access control phase starts with receiving a request
to access an object, requested type of access and con-
textual information.

2. First, the JI��� JK�?	 =0L�MU��N�	 >=�����NPO ��:;Q= function
is called to obtain the security policy associated with
the object. If no relevant policy was found, the autho-
rization status is set to \ and the request is rejected.

Next the JI��� NPH�,NPS ���I	�H=0.0��T��0	���=0: function is called
to evaluate pre- and request-result conditions. If there
are no pre-conditions (this means that the requested
right is granted unconditionally), the authorization sta-
tus is set to Y . Otherwise, the pre-conditions are eval-
uated and the result is stored in the authorization status$ _

.

If the request-result conditions are present in the policy,
the conditions are evaluated and the intermediate result
is stored in variable 3 . The conjunction of the 3 and$ _

is stored in the authorization status
$ _

. If authoriza-
tion is not granted (

$ _ A@bY), the request is rejected.

3. The execution control phase consists
of starting the operation execution process and calling
the JK��� ��F�,NP�I	���=0: NP=0:V	�.0=�� function.

If mid-conditions are found, the conditions are evalu-
ated. Some mid-conditions are evaluated just once c ,
other mid-conditions are evaluated in a loop until ei-
ther the operation finishes or any of the mid-conditions
fails. In the latter case, the operation execution is sus-
pended and the reactive actions are started. The mid-
conditions can be returned unevaluated to be enforced
by application. The result is stored in

$ `
.

4. During the post-execution
action phase the JI��� >D=0�W	 �,F�,NX��	���=0: ��N�	���=0:;� func-
tion is called. The operation execution status (in-
dicating whether the operation succeeded/failed) is
passed to the JI��� >D=0�W	 ��FD��NP�I	���=0: ��N�	���=0:;� . If no post-
conditions are found, the

$ a
is set to Y , otherwise the

post-conditions are evaluated and the result is stored in$ a
.

4 Related Work

The work by Huang and Shan [8] describes a SQL-like
policy definition language. The policy enforcement process
allows refining of the initial authorization request (request
enhancement) and suggesting alternatives (request rewrit-
ing) if the requested resource is unavailable. These actions
are performed by the policy enforcement mechanism befored

E.g., locking a file to place a hold on user account.

45

submitting the actual resource retrieval request to the re-
source manager. This approach is different from ours in that:

1. The point of the policy enforcement is at the cre-
ation of the resource request (based on the enhance-
ment/rewriting of the initial request), which complies
with existing policies. Then the resource is retrieved
without any further checks. In our framework, the
request is checked against the policies and is de-
nied/granted or uncertain. No request modifications
exist.

2. The approach has a limited condition representation
model that does not support side effects.

The Policy Maker system described in the papers by Blaze et
al. [1], [2] focuses on construction of a practical algorithm
for a determining trust decisions. Policies and credentials
encode trust relationships among the issuing sources.

In Policy Maker’s terminology, ”proof of compliance
question” asks if the request e , supported by a set of cre-
dentials complies with a policy � . This is equivalent to the
authorization question that we consider in our work: ”is re-
quest e authorized by the policy � (in our model the creden-
tials are contained in the request)”. Their approach, how-
ever, is different from ours.

In our approach, the information passed to the authoriza-
tion engine with the authorization request is used to evalu-
ate conditions in the relevant policy statements. The order
of condition evaluation is important.

The Policy Maker system is based on the logic program-
ming approach. The goal is to infer the desired conclusion
from given assumptions in a computationally viable man-
ner. In Policy Maker, the credentials and policy (called as-
sertions) are used collectively to compute a proof of com-
pliance. The assertions can be run in an arbitrary order and
produce intermediate results that then can be fed into other
assertions.

Hayton and colleagues [7] proposed a role-based ac-
cess control system called OASIS. OASIS services specify
policy for role activation using Role Definition Language
(RDL) that is defined in terms of axioms in proof system.
These axioms are used to prove user’s eligibility to enter a
set of roles.

The policy for each set of services is specified at adminis-
trative domain level, with service level agreements between
domains. The role names are local to each service. A role
can be specified as being permitted only for those who can
prove membership of other roles issued by this and other
services. The services are responsible for issuing certifi-
cates, verifying their validity and notifying other services
about the certificate state changes. A policy defines a set
of conditions under which a user can activate a role. Con-
dition evaluation is achieved by presenting a correspond-
ing certificate. The role revocation is accomplished through

membership conditions. Some of the membership condi-
tions must continue to hold while the role remains active.
If any of the membership conditions associated with the ac-
tivated role fails, the role is deactivated. In some sense,
the OASIS membership conditions are similar to our mid-
conditions that must hold during operation execution.

RDL is not as generic and expressive as our approach and
not as well suited to representing complex access control
policies and those that include mandatory access control.

Policies, representable in Policy Maker and RDL, are re-
stricted to the set of policies which do not produce side ef-
fects, resulting in change of the system state.

Ponder [4] is an object-oriented policy specification lan-
guage that is suted for role-based access control policies, as
well as general-purpose management policies. Ponder is tar-
geted for different types of policies, including obligations,
authorizations, delegation and filtering policies, and group-
ing these policies into aggregate structures. The obligation
policies, for example, specify what actions (e.g., notifica-
tion or logging) are carried out when specific events occur
within the system. To some extent, the request-result and
post-conditions in our framework serve a similar purpose.
However, there are several significant differences between
Ponder’s and our approaches. First, in our framework all
security requirements are expressed in a single policy struc-
ture, whereas in the Ponder approach authorization and obli-
gation policies can be specified independently. These can
lead to conflicts between the two policy types. Second, the
policy in our framework is enforced by the same access con-
trol mechanism. The three-phase policy enforcement model
allows for parts of policy (particular conditions) to be en-
forced at different times. In contrast, the Ponder uses a sep-
arate enforcement mechanism for each policy type.

Finally, the Ponder obligation policies are triggered by
system events whereas in our framework the actions are trig-
gered by other conditions in the same policy, such as thresh-
old or system threat level.

Minsky and Ungureanu [11], [12] define the policy in
terms of messages that only a restricted set of agents is per-
mitted to exchange. Furthermore, the message exchange is
controlled by a set of rules that is included in the policy. The
policy enforcement mechanism is based on a set of trusted
agents that interpret the rules and enforce them by regulat-
ing the message exchanges and the effect that the messages
have on the control state (attributes and permissions) of the
participating agents.

The ability to communicate and change the state resem-
bles our concept of the read and write conditions. Our ap-
proach is different in that the “state” has a wider meaning.
It includes all security-relevant information about real world
which is representable in a computer system, e.g., bank ac-
count balance, temperature and user identity. Another dif-
ference is that the reading and writing of the state is based on

46

the ordered synchronous evaluation of the conditions, rather
than controlled message exchange.

Jajodia et al. [9] have proposed a logical language for the
specification of authorizations. The concerns addressed in
this work are orthogonal to the ones in this paper. In par-
ticular, they focus on modeling conflict resolution, integrity
constraint checking and derivation rules (that derive implicit
authorizations from explicit ones), while our work focuses
on the representation and enforcement of authorization poli-
cies enhanced with detection and management of security
violations.

Summary of the research of audit-based intrusion and
misuse detection is given by Lunt [10]. Sandhu and Sama-
rati [17] discuss authentication, access control and intrusion
detection technologies and suggest that combination of the
techniques is necessary in order to build a secure system.

5 Conclusions and Future Work

Traditional authorization mechanisms check whether a
user is acting within prescribed parameters and will not de-
tect abuse of privileges. Advanced policies can condition-
ally generate audit records and in limited ways can react to
state generated by intrusion detection engines based on ob-
servation of the audit records. Such policies can also adapt
the level of detail of the audit records generated until an
intrusion detection engine notices that something is amiss,
though not necessarily what it is. Such policies can also
adapt the applied authentication policies to require more in-
formation from a user when suspicious activity has been de-
tected.

In this paper we presented an authorization framework
that enables the specification and enforcement of advanced
authorization policies.

The GAA-API implementation is available at
http://www.isi.edu/gost/info/gaaapi/source.
For further details about the authorization model see [16].
For more information about the GAA-API see [15].

The GAA-API has been integrated with several ap-
plications, including ssh and Globus Security Infrastruc-
ture [6]. Currently we are integrating the GAA-API with
FreeS/WAN IPsec.

There are some aspects of distributed policy evaluation
and enforcement that do not fit well within the framework.
In the current framework we assume that conditions are
evaluated consecutively and that authorization requests do
not overlap. These two assumptions enable us to concen-
trate on a single condition evaluation at a time and, there-
fore, avoid the problem of coordination of multiple condi-
tion evaluation processes.

This results in inefficient policy evaluation process and
leads to systems that cannot scale to large numbers of
objects. Our current approach may be appropriate for

some client-server applications, where the server is an au-
tonomous agent, in complete charge of its resources. The
server maintains the security policy and is responsible for
the policy evaluation. Some distribution of the policy eval-
uation process can be achieved through the condition eval-
uation function implemented as, for example, an RPC call
that is performed synchronously. However, this approach is
not suitable for truly distributed architectures where a set of
servers implement the policy and the policy evaluation pro-
cessing can be distributed over several servers. Each server
is responsible for enforcing of a part of the whole access
control policy.

The future directions for this research include exploring
extensions to the framework that could encompass these is-
sues.

6 Appendix

We use the Backus-Naur Form to denote the elements
of our policy language. Curly brackets, f2g , surround items
that can repeat zero or more times. A vertical line, |, sepa-
rates alternatives. Items inside double quotes are the termi-
nal symbols. An EACL is specified according to the follow-
ing format:
eacl ::= h eacl entryi
eacl entry ::= pos access right conditions |
neg access right conditions
pos access right ::= "pos access right"
def auth value
neg access right ::= "neg access right"
def auth value
conditions ::= pre conds mid conds rr conds
post conds
pre conds ::= h conditioni
mid conds ::= h conditioni
rr conds ::= h condition i
post conds ::= h condition i
condition ::= cond type def auth value
cond type ::= alphanumeric string
def auth ::= alphanumeric string
value ::= alphanumeric string

cond type defines the type of condition, e.g., access
identity or time.
def auth indicates the authority responsible for defin-

ing the value within the cond type, e.g., Kerberos.
value is the value of condition. Its semantics is deter-

mined by the cond type field. The name space for the
value is defined by the def auth field.

It should be pointed out that the EACL language descrip-
tion presented here is not complete. Our current framework
supports flexible policy composition model. The discussion
of this issue is beyond the scope of this paper.

Next we present an example of an EACL that governs ac-
cess to a host.

47

Entry 1 specifies that Tom can not login to the host.
Entries 2 and 3 mean that logins from the specified IP ad-

dress range are permitted, using either X509 or Kerberos for
authentication if the number of previous login attempts dur-
ing the day does not exceed 3. If the request fails, the num-
ber of the failed logins for the user should be updated. The
connection duration time must not exceed 8 hours.

Entry 4 means that anyone, without authentication, can
check the status of the host if he connects from the specified
IP address range.

Entry 5 specifies that host shut downs are permitted, us-
ing Kerberos for authentication. If the request succeeds, the
user ID must be logged. If the operation fails, the sysadmin
must be notified by e-mail.

EACL entry 1
neg access right test host login

pre cond access id KerberosV.5 tom@ORGB.EDU
EACL entry 2

pos access right test host login

pre cond location IPsec 10.1.1.0-10.1.200.255
pre cond access id X509
”/C=US/O=Trusted/OU=orgb.edu/CN=partnerB”
pre cond threshold local j 3failures/day/failed log/
rr cond update log local on:failure/failed log/info:userID
mid cond duration local j 8hrs

EACL entry 3
pos access right test host login

pre cond location IPsec 10.1.1.0-10.1.200.255
pre cond access id KerberosV.5 partnerb@ORGB.EDU
pre cond threshold local j 3failures/day/failed log/
rr cond update log local on:failure/failed log/info:userID
mid cond duration local j 8hrs

EACL entry 4
pos access right test host check status

pre cond location IPsec 10.1.1.0-10.1.200.255
EACL entry 5

pos access right test host shut down

pre cond access id KerberosV.5 trusted@ORGA.EDU
rr cond audit local on:success/info:userID
post cond notify local email/to:sysadmin/on:failure

7 Acknowledgement of Sponsorship

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Lab-
oratory, Air Force Materiel Command, USAF, and the
Xerox Corporation under the following agreements: (1)
F30602-00-2-0595, Dynamic Policy Evaluation of Con-

taining Network Attacks Project (DEFCN); (2) DABT63-
94-C-0034, Security Infrastructure for Large Distributed
Systems Project (SILDS); (3) J-FBI-95-204, Global Op-
erating System Technologies Project (GOST); (4) DE-
FC03-99ER25397, Diplomat project; and (5) HE1254-97,
XAUTH Project.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon.

8 Disclaimer

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Labo-
ratory, U.S. Department of Energy, the U.S. Government or
the Xerox Corporation.

References

[1] M. Blaze, J. Feigenbaum and J. Lacy.
Decentralized Trust Management.
Proceedings IEEE Symposium on Security and Pri-
vacy, IEEE Computer Press, Los Angeles, pages 164-
173, 1996.

[2] M. Blaze, J. Feigenbaum and M. Strauss.
Compliance Checking in the Policy Maker Trust Man-
agement System. In Proceedings of the Financial
Cryptography ’98, Lecture Notes in Computer Sci-
ence, volume 1465, pages 254-274.

[3] M. Carney and B. Loe.
A Comparison of Methods for Implementing Adaptive
Security Policies. In Proceedings of the 7th USENIX
Security Symposium, pages 1-14, January, 1998.

[4] N.Damianou, N. Dulay, E. Lupu and M. Sloman.
The Ponder Policy Specification Language. In Pro-
ceedings of the Workshop on Policies for Distributed
Systems and Networks, Springer-Verlag LNCS 1995,
pages 18-39, Bristol, UK, January, 2001.

[5] I. Foster and C. Kesselman, editors.
The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

[6] I. Foster and C. Kesselman.
Globus: A metacomputing infrastructure toolkit. In-
ternational Journal of Supercomputer Applications,
Summer 1997.

48

[7] R. J. Hayton, J. M. Bacon and K. Moody.
OASIS: Access Control in an Open, Distributed Envi-
ronment.
Proceedings of the IEEE Symposium on Security and
Privacy, pages 3-14, Oakland, CA, May 1998.

[8] Y. Huang and M. Shan.
Policies in a Resource Manager of Workflow Systems:
Modeling, Enforcement and Management. Hewlett
Packard Lab Software Technology Laboratory Techni-
cal Report HPL-98-156, September, 1998.

[9] S. Jajodia, P. Samarati and V.S. Subrahmanian.
A logical Language for Expressing Authorizations.
Proceedings of the 1997 IEEE Symposium on Security
and Privacy, 1997.

[10] T. F. Lunt.
A Survey of Intrusion Detection Techniques, Com-
puters and Security, volume 12, pages 405-418, June
1993.

[11] N. Minsky and V. Ungureanu.
Unified Support for Heterogeneous Security Policies
in Distributed Systems. In 7th USENIX Security Sym-
posium, San Antonio, Texas, January 1998.

[12] N. Minsky and V. Ungureanu.
Law-Governed Interaction: A Coordination & Con-
trol Mechanism for Heterogeneous Distributed Sys-
tems. In ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol 9, No 3, pages 273-
305, July 2000.

[13] B.C. Neuman.
Proxy-based authorization and accounting for dis-
tributed systems. In Proceedings of the 13th Interna-
tional Conference on Distributed Computing Systems,
Pittsburgh, May 1993.

[14] B.C. Neuman and T. Ts’o.
Kerberos: An authentication service for computer net-
works. IEEE Communications Magazine, pages 33-
38, September 1994.

[15] T. V. Ryutov and B. C. Neuman.
Representation and Evaluation of Security policies for
Distributed system Services. In Proceedings of the
DARPA Information Survivability Conference and Ex-
position, January 2000. Hilton Head, South Carolina.

[16] T. V. Ryutov and B. C. Neuman.
The Set and Function Approach to Modeling Autho-
rization in Distributed Systems. In Proceedings of the
Workshop on Mathematical Methods and Models and
Architecture for Computer Networks Security, May
2001, St. Petersburg Russia.

[17] R. Sandhu and P. Samarati.
Authentication, Access Control, and Intrusion Detec-
tion.
The Computer Science and Engineering Handbook,
pages 1929-1948, CRC Press, 1997.

49

The Set and Function Approach to Modeling
Authorization in

Distributed Systems

Tatyana Ryutov and Clifford Neuman

Information Sciences Institute University of Southern California
4676 Admiralty Way suite 1001

Marina del Rey, CA 90292
{tryutov, bcn}@isi.edu

(310)822-1511 (voice) (310)823-6714 (fax)

Abstract. We present a new model that provides clear and precise se-
mantics for authorization. The semantics is independent from underling
security mechanisms and is separate from implementation. The model
is capable of representing existing access control mechanisms. Our ap-
proach is based on set and function formalism. We focus our attention
on identifying issues and use our model as a general basis to investigate
the issues.

1 Introduction

The Internet has rapidly evolved to a platform that supports business and ser-
vices such as e-commerce, electronic publishing, and health care. Security com-
promises now have real world consequences, resulting in release of sensitive or
protected information and monetary loss. Attacks on medically critical comput-
ing capabilities might even result in loss of human life. The ability to define and
enforce fine-grained security policies for systems and services is important in
such systems. The ability to understand such security policies is critical if they
are to be correctly written or implemented. Unfortunately, as the complexity
of the systems grow, these polices are becoming harder to correctly define and
more difficult to enforce.

To cope with the growing complexity of policy specification it is useful to
design a conceptual model that gives a structured way to think about policies.
A model enables one to better understand the domain of study, visualize the
main elements and their behavior at some chosen level of detail and use a short
hand notation for precise description and decreased ambiguity. Furthermore, the
conceptual integrity of a system derives from a coherent high-level view of the
system organization and functionality. Thus, one of the main objectives of this
work is to construct a conceptual model for policy representation and evaluation.
For doing so, we use a methodology based on concepts of sets and functions.

In our paper we are only interested in the class of authorization policies ver-
sus a wider range of policies, such as distributed system management policies.
The goal of authorization polices is to govern access to objects. Supporting such

V.I. Gorodetski et al. (Eds.): MMM-ACNS 2001, LNCS 1452, pp. 189–207, 2001.
c© Springer-Verlag Berlin Heidelberg 2001 50

goodelle
Text Box
Appendix E:

190 T. Ryutov and C. Neuman

policies takes the form of monitoring and restricting the user activity within
the distributed system (access control), making authorization decisions (autho-
rization) and performing necessary actions to modify the behavior of the system
(policy enforcement).

An authorization policy specifies conditions, which must be satisfied before,
during or after the access right is exercised. For example, it may be desirable to
enforce the following policy: “A process can be run on the host A if the request
originates from a domain B and the process does not use more then 20% of the
CPU time. An audit record about the started process must be generated”.

This policy specifies several conditions:

1. location of the requester
This condition must be satisfied before the access right ”process run” is
granted.

2. system load
This condition must hold while the process is running.

3. audit record generation
This condition must be met after the process is started.

Our model captures this intuitive notion of authorization policy and provides
a formalism for the policy representation and evaluation.

There has been extensive research in authorization and a number of formal
models have been developed.

Some of these contributions focus on addressing authorization requirements
for specific policy domains, e.g., database systems [3], collaborative environment
[17] or separation of duty [2]. Others are concerned with a particular access
control mechanism, such as an ACL [1].

What is still missing, is a unified view of authorization in a distributed,
multi-policy environment. Such a environment is composed of connected inde-
pendent computer systems managed by separate administrative authorities. In
a multi-policy environment the policy integration should incorporate diverse au-
thorization models, which can coexist in a distributed system. Administrators
of each domain might express security policies by means of different formalism.

Generalizing the way that applications define their authorization require-
ments provides the means for integration of local and distributed security policies
and translation of security policies across multiple authorization models.

Our paper describes an authorization model designed to meet these needs.
In particular, our model allows us to represent existing access control models
(e.g., ACL and capability) in a uniform and consistent manner.

The model simplifies the specification of complex authorization policies and
provides a generic policy evaluation environment. Furthermore, the model pro-
vides a general basis for identifying and resolving issues, not well-understood
before, such as side effects of the policy evaluation on the system state and
related policies.

By separating generic from domain specific elements, we ensure that the
model is extensible to arbitrary (authorization policy) domains.

51

The Set and Function Approach to Modeling Authorization 191

We keep our model simple and practical to serve as an aid to implementation.
We have found that the model suggested ideas for implementations, for example
that condition implementation should be based on three phases.

Our final goal is to implement a subset of our conceptual model and provide
a programmable framework for different kinds of polices. The framework maps
real-world policy entities such as users, resources, and organizational policies,
to the representation of these entities in the programming environment. The
discussion of the initial implementation can be found in [14].

2 Related work

In this section we review prior research in representation and evaluation of au-
thorization. Formal semantics for policy representation and evaluation has been
used by other researches, in particular Woo and Lam [15].

Their work addresses general concerns as ours, in particular, positive and
negative authorizations and providing computable semantics. In our model, au-
thorization is given a precise semantics independent of underlying policy re-
quirements. This distinguishes our work from [15] where a formal notion of an
authorization policy has different semantics for each set of authorization require-
ments.

The Policy Maker system described in the papers by Blaze, et al. [4], [5]
focuses on construction of a practical algorithm for determining trust decisions.
Policies and credentials encode a set of trust relationships among the issuing
sources.

In Policy Maker’s terminology, “proof of compliance question” asks if the
request q, supported by a set of credentials complies with a policy p. This is
equivalent to the authorization question that we consider in our work: “is request
q authorized by the policy p (in our model credentials are contained in the
request)”. Their approach, however, is different from ours.

In our approach, the information passed to the authorization engine with
the authorization request is used to evaluate conditions in the relevant policy
statements. Each condition is evaluated just one time. The order of condition
evaluation is important.

In Policy Maker, the credentials and policy (called assertions) are used collec-
tively to compute a proof of compliance. The assertions can be run in arbitrary
order (and possibly many times) and produce intermediate results, that then
can be fed into other assertions. Policies, representable in the Policy Maker, are
restricted to the set of policies which do not produce side-effects, resulting in
change of the system state. The Policy Maker can be integrated in our model as
a component for evaluation of the trust constraints conditions.

Detailed formal language specification based on set and function formalism is
given in the paper by Sandhu [2] for specific constraints of separation of duty in
role based environment. The language semantics is defined by a restricted form
of the first order logic. The formal language provides a useful model to study
properties of conflict of interests, in particular separation of duty.

52

192 T. Ryutov and C. Neuman

The paper by Abadi, et al. [1] presents a logical language for access control
lists. They study the notions of delegation, roles and groups using their logical
language and rules for making access control decisions.

The exploratory work by Moffet and Sloman [11] is aimed to understanding
policy semantics. The two aspects of a policy are considered: motivation and
actual ability to carry out actions.

3 Basic Conceptual Model

The conceptual model presents the high level organizing principles of the autho-
rization model and defines the strategy chosen to realize the model.

3.1 Policy Elements

In this section we explore the notion of a policy and abstract it into a conceptual
model. This section prepares us for going to the more detailed specification given
in the next section. We start the design of the conceptual model with specification
of the components that are to be modeled. At a conceptual level a policy is a
compound entity, which regulates access to objects.

The notion of an object is central to the policy definition. An object is a target
of requests and it has to be protected. An object can be a physical resource such
as a host or a communication channel, as well as an abstract, higher level entity,
e.g., a bank account.

An access right is a particular type of access to a protected object, e.g., read
or write. The notion of a negative access right is useful to specify many practical
policies. Sometimes it is easier to allow access to all and explicitly disallow access
for those who should not have access.

A condition describes the context in which each access right is granted. A
condition must be satisfied in order to allow an operation to be performed on a
target object1. Here are several of the more useful conditions [12].

– access identity
Specifies an authenticated access identity (subject) on whose behalf request
to access an object has been issued.

– time
Time periods for which access is granted.

– location
Location of the principal. Authorization is granted to the principals residing
on specific hosts, domains, or networks.

– payment
Specifies a currency and an amount that must be paid prior to accessing an
object.

1 However, if the access right is negative, the access is denied if all conditions are
met.

53

The Set and Function Approach to Modeling Authorization 193

– quota
Specifies a currency and a limit. It limits the quantity of a resource that can
be consumed or obtained.

– audit
Enables automatic generation of an application level audit data in response
to access requests.

– notification
Enables automatic generation of notification messages in response to access
requests. Specifies the notification method and a receiver.

– trust constraints
Specifies restrictions placed on security credentials. Allows one to validate
the legitimacy of the received certificate chain and the authenticity of the
specified keys.

– attributes of subjects
Defines a set of attributes that must be possessed by subjects in order to get
access to the object, e.g., user age.

Traditional security thinking has been oriented toward authentication as a
prerequisite for authorization. Usually authorization applies after authenticated
requester identity has been established.

In our model policies are treated as the first class citizens. Authentication,
audit and accounting mechanisms are activated by explicit policy requirements,
expressed through conditions. If a policy does not require authenticated user
identity, authentication steps can be ignored or deferred until the policy explicitly
requests it. An example of a policy, which is not concerned with the identity is
“anyone can read file A if $10 is paid”.

Note that in the implementation, some of these conditions might have side
effects. For example, evaluation of payment and quota conditions reduces a
balance somewhere. Evaluation of notification condition results in sending a
message, which is useful in audit.

Unfortunately, side effects might complicate the model. Ignoring the side
effects might cause problems when the side effects create a feedback loop, for
example, when an audit record triggers a network threat detection which affects
the evaluation of subsequent policies, or where payment affects quotas which
affects the ability to perform other operations (once one runs out of money).

Balancing the complexity this adds with the simplicity of the model is still
an open issue, which requires further investigation. Initial ideas on handling the
side effects are given in Section 4.2.

3.2 Basic Definitions and Assumptions

We present our conceptual model based on set and function formalism, algebra
of sets and first order logic. The conceptual model specification is guided by
conventional authorization notions and expected authorization requests.

An elementary policy statement consists of an object component, a positive or
negative access right component and zero or more condition components. Thus,

54

194 T. Ryutov and C. Neuman

to represent the components, we define sets of elements called objects O, positive
rights R, negative rights R and conditions C. All existing policy statements are
contained in the set P . In addition, we define a set of authorization requests Q.

All the sets, except for C2 , are finite dynamic and unordered. The dynamic
property means that sets are not fixed, new elements can be added and existing
elements can be deleted. The finite property assumption requires that at any
particular time, the sets are finite. Negation is applied only to the elements of
the set R to model negative rights. We do not define negative conditions. The
empty set is denoted by ∅.

O is finite dynamic non-empty unordered set of object elements:

O = {o1, o2, . . . , on} . (1)

R is finite dynamic non-empty unordered set of access right elements:

R = {r1, r2, . . . , rn} . (2)

R is finite dynamic non-empty unordered set of negative access right ele-
ments. Set R is constructed from the set R by applying negation to each element
of the set R.

R = {¬r1,¬r2, . . . ,¬rn} . (3)

Note that R
⋂

R = ∅.
C is dynamic unordered set of condition elements with a special condition

element c∗, which represents an empty condition:

C = {c∗, c1, c2, . . . , cn} . (4)

P is finite dynamic unordered set of compound policy elements:

P = {p1, p2, . . . , pn} . (5)

Each element p of the set P represents a set of three elements:

p = {o, r, c} , o ∈ O, r ∈ R ∪ R, c ∈ C . (6)

Note that a condition element can be c∗. When c = c∗ the rights are granted or
denied unconditionally. An example of a practical policy with an empty condition
is: “file A can be read by anyone”.

Q is finite dynamic partially ordered set3 of compound authorization request
elements:

Q = {q1, q2, . . . , qn} . (7)

Each element q of the set Q represents a set of three elements:

q = {o, r, c}, o ∈ O, r ∈ R, c ∈ C . (8)
2 The conditions can be represented by different entities, including numbers (see
Section 4.2), so we can not state finiteness property.

3 The reasoning behind the requirement of the partial ordering of the set Q is discussed
in Section 4.2.

55

The Set and Function Approach to Modeling Authorization 195

The elements correspond to the target object (o), requested access right (r)
and a condition constant (c). The condition constant c represents information
which is matched to the requirements specified in the condition of the relevant
policy statement. In practice, this information can be represented by a set of
credentials, e.g., authenticated user identity. For example, a policy statement
“Anyone can read file A from 8am till 6pm” specifies a time condition. The
request “read (r) file A (o) at 5pm (c)” specifies current time and is matched to
the time condition in the policy statement.

To make our model practical, special provisions should be made for dealing
with the following situations:

– incomplete data, not known at the authorization time. During network frag-
mentation some data may be inaccessible.

– policy requires a certain event to happen in the future. Statements about
the future do not have truth values until the event described takes place.

– the function used to evaluate conditions does not terminate for the arguments
supplied. Incorrect implementation, bad parameters.

In order to properly deal with these situations we will adopt a three-valued
logic [9], [13].

Three-valued logic is classical boolean (true/false) logic extended with a third
truth value - undefined.

We define an auxiliary set B, consisting of the three constants: true, repre-
sented by T , false, represented by F and U , meaning uncertainty.

B = {T, F, U} . (9)

Table 1 shows the truth tables, when at least one argument is equal to U .

QP

U U U U

U T U T

 P & Q P Q

F U F U

U F F U

T U U T

Table 1.

In addition, ¬U = U . Next we define functions to express an authorization
process.

The by object function takes a set of policy elements P and request q, which
contains particular object ô as an argument and returns a subset P ′ ⊆ P where
this object appears.

P ′ = by object(P, q),

ô ∈ O, ô ∈ q, q = {ô, r, c}, q ∈ Q, P ′ ⊆ P : ∀p′ ∈ P ′ : p′ = {ô, r, c} . (10)

56

196 T. Ryutov and C. Neuman

The by right function takes a set of policy elements P and request q, which
contains particular access right r̂ as an argument and returns a subset P ′ ⊆ P
where this right appears.

P ′ = by right(P, r̂), r̂ ∈ R,

P ′ ⊆ P : ∀p′ ∈ P ′ : p′ = {o, r̂, c} or p′ = {o,¬r̂, c} . (11)

The eval cond is a condition evaluation function.

b = eval cond(ĉ, c̃), ĉ ∈ C, c̃ ∈ C, b ∈ B . (12)

The function M defines positive or negative modality of the policy element.
If the access right, contained in the policy element is positive or negative, the
modality is positive or negative, respectively.

M(pi, q) =
{
eval cond(ĉ, c̃), r̂ ∈ R
¬eval cond(ĉ, c̃), r̂ ∈ R,

ĉ ∈ pi, c̃ ∈ q, r̂ ∈ pi, pi ∈ P ′, q ∈ Q . (13)

TheM function has to be applied to all elements P ′ ⊆ P . The evaluated modality
of each policy element will be taken with or without the negation ¬ according
to its right. After all the modalities are evaluated, we will take their disjunction.
These operations are performed by the eval conditions function.

b = eval conditiods(P ′, q) = M(p1, q)
∨

M(p2, q)
∨

...
∨

M(pn, q),

pi ∈ P ′, i = 1, n, n is the cardinality of P ′,

P ′ ⊆ P, q ∈ Q, b ∈ B . (14)

The resulting value b obeys to the
∨

operation for three-valued logic. That is,
eval conditions returns T if at least one modality gave the result T , F if all
results were F , and U otherwise (i.e., at least one result was U , possible some
F but none T).

The authorization is a composite function:

b = authorization(P, q) =

= eval conditions(P ′′′, q) ◦ by right(P ′, q) ◦ by object(P, q) =

= eval conditions(P ′′′, q) ◦ by object(P ′, q) ◦ by right(P, q) . (15)

The authorization function takes the set of policies P and an authorization
request q as arguments. It returns F , T or U meaning authorized, not authorized
or uncertain. Three-valued logic at the conceptual level has to be mapped to the
two-valued logic at the implementation level. In the end, the access must be
either granted or denied.

57

The Set and Function Approach to Modeling Authorization 197

3.3 Time Dependency

Time dependency appears in our conceptual model implicitly. At each instant
only the set of policies which exists at authorization time is considered. All
future or past policies are irrelevant. Note that this does not mean that the
current policy does not depend on the past or future events. Some policies must
take into account the system execution history or the fact that particular event
must have happened for some operation to take place. An example of practical
policy taking into account occurrence of some event is “If one reads file A, then
one can not send” [16]. Some policies may need to know precise time of the event
occurrence, for example for audit purposes. This may require a time-stamping
of certain occurrences and keeping record of them.

3.4 Changes in the Set Membership

Exercising access rights can result in creating new objects and defining new poli-
cies. In the conceptual schema this is represented as adding an element to the
corresponding set. As we discussed in the previous section, changes in member-
ship of the sets R and R depend entirely on the set O.

The deletion of an element from the sets O, R or R entails deletion of each
element from P in which the deleted element appears. To simplify our model we
require that rights can be applied only to the elements of set O. If we allow rights
to be applied to the elements of P , we will have to consider a policy management
model.

3.5 Policy Representation Issues

We do not allow use of the disjunction in representation of elements of the set
P . The disjunctive form policies such as “Tom or Joe can read file A”, “Tom can
read either file A or B” and “Tom can either read or write file A” is modeled by
using separate policy statements.

O = {A,B} , R = {read, write}, C = {c∗, T om, Joe},

P = {{A, read, Tom}, {A, read, Joe}, {B, read, Tom}, {A,write, Tom}} .

However, disjunction of policy elements can be used in practice for optimization
reasons. For example, in the implementation of an ACL we can combine several
access rights which correspond to a particular access identity condition.

Let us consider the exclusive OR policy representation: “Tom can read files
A or B, but not both”. This policy is a variant of the Chinese wall policy [6], re-
quired in the operation of many financial services. The policy guards against the
conflict of interest. A consultant can freely chose a company in order to offer an
advice. However, once the company has been chosen, the consultant is manda-
tory denied access to the information about all other companies. This policy can

58

198 T. Ryutov and C. Neuman

be implemented using an additional condition, let us call it trigger history. This
condition activates the history of execution.

P = {{A, read, Tom, trigger history}, {B, read, Tom, trigger history}} .

If Tom decides to read file A first, the history is checked, and since initially it
is empty, the right is granted and the information about it is stored. If he tries
to read file B after that, the request will be denied. A history information is
maintained by the system. The history can be centralized or distributed. An
example of implementation of the condition is briefly described in [18]. More
detailed discussion of implementation of the history-dependent access control
policies is given in [10].

In conventional access control models, a subject has been a separate notion.
A subject is an entity on whose behalf a request to access an object has been is-
sued. Traditionally, policy conceptualization is based on three basic entity types:
objects, access rights and subjects. Some of the possible logical groupings of these
entities, such as ACL and capability, have become practical implementations of
the Lampson matrix [8].

In the ACL based systems, policies are grouped by objects. A typical ACL is
associated with an object (or a group of objects) to be protected and enumerates
the list of authorized subjects and their rights to access the object.

In the capability-based systems, policies are grouped by subjects. A capability
lists sets of objects accessible by the subject along with the types of access rights.

These logical grouping can be represented in our model.

ACL An ACL consists of a set of ACL entries. An ACL entry is analogous to
a policy element p, where all conditions are access identity.

Consider a policy: “Tom and Bob can read and write file A”. We can translate
this policy into our policy model as:
“Tom (condition c1) and Bob (condition c2) can read (positive right r1) and
write (positive right r2) file A (object o1) “. We need four policy elements to
represent this policy:

p1 = {o1, r1, c1},

p2 = {o1, r2, c1},

p3 = {o1,r1,c2},

p4 = {o1, r2, c2} .

This way of specification and storage of the policy is tedious and inefficient.
To represent an ACL, we adopt three modifications to the representation of

a policy element p specified in(6):

1. An ACL is associated with each object, so the object is implicit and is
omitted from the policy elements.

2. Conditions are listed first, then access rights. This order is closer to the
traditional ACL specification.

3. We allow disjunction of either positive or negative access rights.

59

The Set and Function Approach to Modeling Authorization 199

Now we need only two ACL entries to represent the policy:

p1 = {c1, r1 ∨ r2},

p2 = {c2, r1 ∨ r2} .

Furthermore, if we allow conditions to be aggregated into a single entry when
the same set of access rights applies to all of them, we need only one policy
statement to represent the policy: p1 = {c1 ∨ c2, r1 ∨ r2}.

by object function returns all policy statements associated with the given
object. The returned set of policies P ′ conceptually represents an ACL associated
with the object ô.

Capability To demonstrate how capabilities can be represented, we define func-
tion by condition, which takes the set of policies P and particular condition ĉ
as arguments and returns a subset P ′, where this condition appears. Intuitively,
this function returns all policy statements associated with the given condition.

P ′ = by condition(P, ĉ), ĉ ∈ C, P ′ ⊆ P : ∀p′ ∈ P ′ : p′ = {o, r, ĉ} .

Note that if the condition constant ĉ specifies particular access identity (subject),
then the returned set of policies P ′ conceptually represents a capability possessed
by the subject identified by the condition ĉ. Next the set P ′ can be passed
to the authorization function along with an authorization request for further
evaluation.

Representation of a capability is quite similar to that of an ACL. A capability
is associated with each subject, so the subject is implicit and is omitted from
the policy element. Thus, each policy statement contains only elements, which
represent objects and access rights.

More detailed discussion of the implementation of ACL and capability can
be found in [14].

4 Extended Conceptual Model

The extended conceptual model expands upon basic conceptual model entities
and interactions. The notion of a policy hierarchy is introduced. The design work
at this level addresses condition side-effects issues.

4.1 Refinements

In this section we describe further refinements of our basic entities. A policy
statement may specify several conditions of different types, for example: “Tom
can read file A only between 9am and 6pm”. This policy defines two conditions:
access identity and time. In (6) we have considered only one condition in the
policy statement. All existing conditions were aggregated into one set (4). Now
we extend the notion of a condition to be distinguished not only by an identifier

60

200 T. Ryutov and C. Neuman

but also by a type. Each condition element has just one type. We assume that
at each instant S condition types exist. We represent these different condition
types by S disjoint sets:

C =
k=1,S⋃

Ck, Ci

i, j=1,S i �=j⋂
Cj = ∅ . (16)

Now we define a totally ordered4 set C̃. Each element of this set is constructed
from one element of the S disjunctive sets. Intuitively this means that each
element of C̃ consists of S condition elements of different types, some of the
elements can be c∗.

C̃ = {c̃1, c̃2, ..., c̃S}, c̃i ∈ Ci, i = 1, S . (17)

We define S condition evaluation functions for each condition type. In our policy
example we define two function for checking access identity and current time.

b = evali(ĉi, c̃i), ĉi ∈ Ci, c̃i ∈ Ci, b ∈ B, evali(c∗, c∗) = T, i = 1, S . (18)

From (4.2) and (15) we observe that if at least one of the policy statements
evaluates to T , the authorization will be granted. This behavior may not be
always desirable. For example, we would want a policy assigned by the system
administrator to take precedence over the one assigned by an individual user.
This requires the means of specifying a hierarchical relationship among policy
statements.

The hierarchy of policies is modeled by assigning priorities. We do not at-
tempt to give a full theoretical development of the method of assigning priorities
here. The essential requirements is that one should be able to decompose the
whole policy into totally ordered policy statements. To express policy priori-
ties, we define set W . W is a finite totally ordered set of elements that can be
compared (e.g., integers).

W = {w1, w2, . . . , wn} , wi < wj , i, j = 1, L, i < j, L is the cardinality of W .

We redefine element q, given in (8) in the following way:

q = {o, r, c̃1, c̃2, ..., c̃S}, o ∈ O, r ∈ R, c̃i ∈ Ci, i = 1, S, q ∈ Q . (19)

We extend (6) in two ways: 1) each element p has an additional component w,
which denotes priority of this element. 2) condition component is represented by
a set of ⊆ condition constants of different types.

p =
{
o, r, C̃ ′, w

}
, o ∈ O, r ∈ R

⋃
R, C̃ ′ ⊆ C̃, w ∈ W, p ∈ P . (20)

Figure 1 illustrates representation of a policy element p.
4 The reasoning behind the requirement of the total ordering of the set C̃ is discussed
in Section 4.2.

61

The Set and Function Approach to Modeling Authorization 201

Set O

O

c

c
c

O

Set R Set W

r
r

r w

w
w

w

Set C
c

c c
c

c

c c

c

r

1

3

i

1

2

m
3 4

n

1

2

c

Set C

Set C

O 2

O
j

3

2

1

k

23

21

p

1

S

2 2

2 2

2

2

1

3

1

1

1

1

S
S

S

S
p

1
3

i

i

j

p = (fileA, read, 7, Tom, *.isi.edu)

j

Set P Set Q

p

p
p

q

q

q

1

2

2

1

i

32

i

q = (fileB, write, Bob, Monday)
q = (o , r , c , c)

k m
1

n
2

jp = (o , r , W , c , c)

Set B

U
F

T

j

Figure 1.

The by priority function takes a set of policies P as an argument and returns a
subset P ′ with the maximum priority. The ordering in the set W determines the
policy statement which is enforced if several policy statements are simultaneously
satisfied. Note that if the set P ′ contains more then one element, the elements
have equal priorities. In this case, if any of the policy statements is satisfied,
authorization is granted.

P ′ = by priority(P),

P ′ ⊆ P : ∀p′ ∈ P ′, p′ = {o, r, C̃, ŵ}, ŵ = max(∀w : p = {o, r, C̃, w} ∈ P ′) .
(21)

We redefine eval cond function given in (12) in the following way:

eval cond = eval1(ĉ1, c̃1)&eval2(ĉ2, c̃2)&...&evalS(ĉs, c̃s),

ĉi ∈ Ci, c̃i ∈ Ci, i = 1, S,

b = eval cond(p), p ∈ P, b ∈ B . (22)

The eval cond function is a short hand notation for representation of conjunction
of the results, obtained by applying evali to corresponding condition constants
from the policy element p. All conditions must be met simultaneously in order
to satisfy the authorization request.

The resulting value b obeys to the & operation for three-valued logic. That
is, eval cond returns T if all elements gave the result T , F if at least one result
was F , and U otherwise (i.e. at least one result was U , possible some T but none
F .

62

202 T. Ryutov and C. Neuman

We redefine authorization function given in (15) in the following way:

b = authorization(P, q) =

= eval conditions(P ′′′, q) ◦ by priority(P ′′) ◦ by right(P ′, q) ◦ by object(P, q) =

= eval conditions(P ′′′, q) ◦ by priority(P ′′) ◦ by object(P ′, q) ◦ by right(P, q),

P ′′′ ⊆ P ′′ ⊆ P ′ ⊆ P, q ∈ Q, b ∈ B . (23)

Figure 2 illustrates the authorization function.

Set P
Set P’’’SetP’’

Set P’

by_object(P, q)by_right(P’, q)

1
p = (fileA, read, 5, Tom, $10)

P’’’= {p , p }

2
p = (fileA, read, 5, Ken)

1 2

eval_conditions(P’’’, q) = T/F/U

p = (fileA, read, 5, Ken)p = (fileA, read, 5, Ken)p = (fileA, read, 5, Ken)

q = (fileA, read, Tom, $10)

authorization(P, q) = eval_conditions(P’’’, q) o by_priority(P’’) o by_right(P’, q) o by_object(P, q) =

by_priority(P’’)

 = eval_conditions(P’’’, q) o by_priority(P’’) o by_object(P’, q) o by_right(P, q) = T/F/U

Figure 2.

4.2 Discussion of Condition Side-Effects

The total order property of the set C̃ defined in (16) requires that policy ele-
ments that differ only by the order of condition elements are considered to be
distinct. This property is important to deal with possible side effects caused
by the condition evaluation. Consider a policy “Tom can read file A only if
notification is sent (notification condition) and system threat condition is low
(threat level low condition)”. Assume that current system threat level is low. As-
sume that the notification about Tom reading file A triggers high system threat
level. There are two ways to represent the policy in our model:

p1 = {A, read, Tom, threat level low, notification},
p2 = {A, read, Tom, notification, threat level low} .

63

The Set and Function Approach to Modeling Authorization 203

The evaluation of p1 results in access grant, however evaluation of p2 results in
denial.

In this section we will discuss determining the correct order of the condition
elements in the policy statement p defined in (20).

System State Representation To discuss side effects produced by evaluation
of some conditions, we introduce time into our model explicitly. Time is discrete
and is represented by a totally ordered set of natural numbers. Each number
corresponds to a discrete time interval. A time interval is related to a condition
evaluation process.

To simplify our presentation, we assume that dependent authorization re-
quests do not overlap. The effects of the dependent requests are resolved by
serialization, in which the requests are ordered by the cause-effect ordering.

Similarly, we assume that conditions are evaluated consecutively. These two
assumptions enable us to concentrate on a single condition evaluation per each
time interval and, therefore, avoid the problem of coordination of multiple con-
dition evaluation processes.

Figure 3 illustrates our representation.

ti ti+1 ti+n

request Rj+1
authorization

 request completed

condition evaluation

...

request Rj
authorization

S

S

S

i

i+1

i+n

(T/F/U is returned)

system state

time

Figure 3.

A time interval begins when a condition evaluation starts and it ends when
the condition evaluation is completed with the resulting T/F/U . This means
that the duration of the time intervals can vary.

The general idea underlying our approach is that the system state can be
formalized by a sequence of system states S1, S2, . . ., Sk. Each system state Si

is labeled by the time interval i.
By a system state we mean not only information describing a particular com-

puter system such as system load, network bandwidth consumption, number of

64

204 T. Ryutov and C. Neuman

available processors, but also all information about the real world which is repre-
sentable in a computer system, for example: bank account balance, temperature,
user identity.

Here any system state Si is all the information that has been deduced up to
the time interval i. The information is represented by a set of system variables.
The information is partial, since some system variables can be undefined at some
time intervals.

At each time interval i there is a transition Si → Si+1from the current
system state Si to the new system state Si+1. Each transition is characterized
by updating the values of some system variables. The variables can change not
only as the result of condition evaluation but also because of other events, e.g.,
system load is altered. All side effects of condition evaluation are recorded in the
corresponding system variables.

Classification of Conditions In this section we present a taxonomy of condi-
tions. We say that a condition writes system state, if the condition evaluation
function changes values of some system variables.

The fact that evaluation of condition c changes value of the system variable
j is represented by the notation c(Si) → Si+1

j .
We say that a condition reads system state if the condition evaluation

function requires reading of particular system variables.
The fact that evaluation of condition c requires the value of the system vari-

able j is represented by the notation c(Si
j) → Si+1.

We say that a condition ĉ depends on condition c̃, if condition ĉ requires
reading of some system variables, which are written by the condition c̃.

The fact that condition ĉ requires the value of the system variable j, which
is written by the condition c̃ is represented by the notation: c̃(Si

j) ↪→ ĉ(Si+1
j).

Conditions are classified by the read/write system state property:

– read conditions read system state but do not write system state, for ex-
ample time, location and system load.

– write conditions write system state and may read system state, for ex-
ample, payment. Payment requires checking for the presence of required
amount (read system variable k) and reducing the balance by the requested
amount (write system variable k). This is represented as: c(Si

k) → Si+1
k .

Note that write conditions must be evaluated before the read conditions
that are dependent on them.

Designing the condition ordering algorithm that satisfies the ordering require-
ments falls into the realm of scheduling of processes with precedence constraints
and is outside of the scope of this paper.

Condition Representation and Evaluation Read conditions such as access
identity and location appearing in the authorization request, specify a set of
constants which must be matched against a corresponding set of constants found

65

The Set and Function Approach to Modeling Authorization 205

in the policy elements. These conditions are represented by a set C1. This set is
constructed from a set of all condition constants passed in authorization requests
q defined in (19), a set of all condition constants contained in policy elements p
defined in (20) and a set of operations M . Condition evaluation function for this
type of conditions returns T if applying operation m, (m ∈ M) to the condition
constants evaluates to T , otherwise it returns F .

For example, a set of operations M may contain (⊆). If m =⊆, condition
evaluation function returns T if ĉ1 ⊆ c̃1, (ĉ1 ∈ C1, c̃1 ∈ C1), otherwise it returns
F .

Some conditions, such as system load, can be represented numerically.
These conditions are evaluated by comparing numbers (natural, integer or real).
Therefore, we can define the set of operations as
M = { = ,�= , < , > , ≤, ≥}.

Write conditions, such as notification and audit specify the name of a
system variable, whose value must be changed, and the new value. Condition
evaluation function for these conditions returns T if the updating of the system
variable succeeded5, and F otherwise.

Unfortunately not all conditions can be represented in this way. In practice,
conditions can be application-specific and complex. The problem is how an in-
formal specification of the condition can be transformed into a precise formal
mathematical structure, within which we can actually prove things about the
properties, such as computability and polynomial-time decidability.

5 Conclusions and Future Work

In this paper we presented a conceptual model for authorization in distributed
systems. We introduced precise semantics for policy representation and evalu-
ation. The semantics is defined independently from underling security mecha-
nisms and is separate from implementation. The flexibility of the model makes
it possible to represent existing access control mechanisms.

We believe that the model provides an effective way to understand and em-
ploy authorization policies in distributed systems.

We have begun to investigate the side-effects of the condition evaluation.
Through the use of the side effects, in our current work we consider integrating
intrusion and misuse detection systems with applications using our model.

We hope that this model will lead to other insights about authorization
policies. We are looking for possible ways to restrict condition expressiveness to
guarantee policy computability and polynomial-time decidability.

5 Updating the system variable can fail due to various reasons, for example we might
be unable to append audit information to the audit log because the disc space has
been exceeded.

66

206 T. Ryutov and C. Neuman

6 Acknowledgments

This research was sponsored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-00-0595, Security Infrastructure for
Large Distributed Systems (SILDS) Project under agreement number DABT63-
94-C-0034 and by Xerox Corporation, XAUTH Project under agreement num-
ber HE1254-97. The U.S. Government is authorized to reproduce and distribute
repreints for Governmental purposes notwithstanding any copyright annotation
thereon.

The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Laboratory, the U.S. Gov-
ernment, or Xerox Corporation.

References

1. Abadi, M., Burrows, M., Lampson, B. and Plotkin, G.: A calculus for Access
Control in Distributed Systems. ACM Transactions on Programming Languages
and Systems, Vol. 15, No 4 (September 1993) 706–734

2. Gail-Joon Ahn and Sandhu, R.: The RSL99 Language for Role-Based Separation
of Duty Constraints. ACM Workshop on Role-Based Access Control (1999) 43–54

3. Bertino, E. and Jajodia, S.: Supporting Multiple Access Control Policies in
Database Systems. Proceedings of the 1996 IEEE Symposium on Security and
Privacy (1996)

4. Blaze, M., Feigenbaum, J. and Lacy, J.: Decentralized Trust Management. Pro-
ceedings IEEE Symposium on Security and Privacy, IEEE Computer Press, Los
Angeles (1996) 164–173

5. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance Checking in the Policy Maker
Trust Management System. In Proceedings of the Financial Cryptography ’98, Lec-
ture Notes in Computer Science, Vol. 1465 254–274

6. Brewer, D.F.C. and Nash, M.J.: The Chinese Wall Security Policy. Proceedings of
the 1989 IEEE Symposium on Security and Privacy, pages (1989) 206–214

7. Jajodia, S., Samarati, P. and Subrahmanian, V.S.: A logical Language for Ex-
pressing Authorizations. Proceedings of the 1997 IEEE Symposium on Security
and Privacy (1997)

8. Lampson, B.: Protection. ACM Operation System review 8(1) (January 1974)
18–24

9. Lukasiewicz, J.: On Three-Valued Logic. 1920. Ruch Filozoficzny 1920, 5, pp.170-
1. English translation in Borkowski, L. (ed.) Jan Lukasiewicz: Selected Works.
Amsterdam: North Holland (1970)

10. Massimo, A., Cazzola, W., Fernandez, E.B.: A History-Dependent Access Control
Mechanism Using Reflection Proceedings of 5th ECOOP Workshop on Mobile
Object Systems (EWMOS’99), (June 1999)

11. Moffet, J.D. and Sloman, M.S.: The representation of Policies as System objects.
Proceedings of the ACM Conference on Organizational Computing Systems, At-
lanta, GA (November 1991) 171–184

67

The Set and Function Approach to Modeling Authorization 207

12. Neuman, B.C.: Proxy-based authorization and accounting for distributed systems.
Proceedings of the 13th International Conference on Distributed Computing Sys-
tems, Pittsburgh (May 1993)

13. Prior, A.N.: Three-Valued Logic and Future Contingents. Philosophical Quarterly.
Vol. 3 (1953) 17–26

14. Ryutov, T.V. and Neuman, B.C.: Representation and Evaluation of Security poli-
cies for Distributed system Services. In Proceedings of the DARPA Information
Survivability Conference and Exposition. Hilton Head, South Carolina (January
2000)

15. Woo, T.Y.C. and Lam, S.S.: Authorization in distributed systems: a new approach.
Journal of Computer Security, 2 (1993) 107–136

16. Schneider, F.B.: Enforceable security policies. Technical report TR98 1664, Cornell
University (January 1998)

17. Shen, W. and Dewan, P.: Access Control for Collaborative Environments. Pro-
ceedings of CSCW (November, 1992) 51–58

18. Simon, R.T. and Zurko, M.E.: Separation of Duty in Role-Based Environments
Computer Security Foundations Workshop (June 1997)

68

Representation and Evaluation of Security Policies
for Distributed System Services

Tatyana Ryutov and Clifford Neuman
Information Sciences Institute

University of Southern California
4676 Admiralty Way suite 1001

Marina del Rey, CA 90292�
tryutov, bcn � @isi.edu

(310)822-1511 (voice) (310)823-6714 (fax)

Abstract

We present a new model for authorization that inte-
grates both local and distributed access control policies
and that is extensible across applications and administra-
tive domains. We introduce a general mechanism that is
capable of implementing several security policies includ-
ing role-based access control, Clark-Wilson, ACLs, capa-
bilities, and lattice-based access controls. The Generic
Authorization and Access-control API (GAA API) provides
a generic framework by which applications facilitate ac-
cess control decisions and request authorization informa-
tion about a particular resource. We have integrated our
system with the Prospero Resource Manager and Globus Se-
curity Infrastructure.

1 Introduction

The conventional concept of an Access Control List
(ACL) is the architectural foundation of many authorization
mechanisms. A typical ACL is associated with an object to
be protected and enumerates the list of authorized users and
their rights to access the object. Access rights are selected
from a predefined fixed set built into the authorization mech-
anism. Specification of the subjects is bound to the particu-
lar security mechanism employed by the system. The limita-
tions of the traditional access control model become appar-
ent when it is applied in a heterogeneous, administratively
decentralized, distributed environment.

The variety of services available on the Internet continues
to increase and new classes of applications are evolving, in-

�
In Proceedings of the DARPA Information Survivability Conference

Exposition, January 2000. Hilton Head, South Carolina.�
0-7695-0490-6/99 $10.00 c

�
1999 IEEE

cluding metacomputing, remote printing, and video confer-
encing. These applications will require interactions between
entities in autonomous security domains. The generic tradi-
tional access rights may not be sufficient for some applica-
tions to express authorization requirements. For example, a
site might be willing to make its resources available to oth-
ers, but limited to maximum CPU and memory utilization or
based on a requirement for payment. It is difficult to specify
such security policies in terms of conventional ACLs.

Specification of security policies for principals from mul-
tiple administrative domains poses additional problems:

� In a multipolicy environment, policy integration should
incorporate the diverse authorization models that can
coexist in a distributed system.

� The implementation will require integration of differ-
ent sets of policies associated with the domain provid-
ing resources, the domain requesting resources and the
individual users within each domain.

� There are multiple mechanisms for authentication of
users in different domains. Therefore, there may be no
single syntax for specification of principals.

� Administrators of each domain might use domain-
specific policy syntax and heterogeneous implementa-
tions of the policies. Generalizing the way that appli-
cations define their security requirements provides the
means for integration and translation of security poli-
cies across multiple authorization models.

This paper describes an authorization framework de-
signed to meet these needs. Our framework is applicable for
a wide range of systems and applications.

It includes a flexible mechanism for security policy rep-
resentation and provides the integration of local and dis-

69

goodelle
Text Box
Appendix F:

tributed security policies. The system supports the com-
mon authorization requirements and provides the means for
defining and integrating application or organization specific
policies as well. We show how this mechanism can imple-
ment role-based access control, Clark-Wilson model, and
lattice-based policies.

Our framework consists of two components, a policy lan-
guage and the Generic Authorization and Access-control
API.

� Policy language

The language allows us to represent existing access
control models (e.g. ACL, capability, lattice-based ac-
cess controls) in a uniform and consistent manner. Au-
thorization restrictions allow the administrator to de-
fine which operations are allowed, and under what con-
ditions (e.g., user identity, group membership, or time
of day). These restrictions may implement application-
specific policies.

� Generic Authorization and Access-control API

A common access control API facilitates the appli-
cation integration of authentication and authorization.
This API allows applications to request the authoriza-
tion policy information for a particular resource and to
evaluate this policy against credentials carried in the
security context for the current connections. Applica-
tions invoke the GAA API functions to determine if a
requested operation or set of operations was authorized
or if additional checks are necessary.

2 Related Work

There has been recent work elsewhere on access control
models for Internet user agents [7], [8]. These models ap-
ply to the Javakey utility as an authentication mechanism
and use public key digital signatures. Our model is gen-
eral enough to use a variety of security mechanisms based
on public or secret key cryptosystems. Also, our model is
application-independent whereas the models in [7] and [8]
apply primarily for browser-like applications.

The Generalized Access Control List (GACL) frame-
work described by Woo and Lam [3] presents a language-
based approach for specifying authorization policies. The
main goal of the GACL framework is merging policies asso-
ciated with different objects and to resolve complex depen-
dencies. GACL allows specification of the inheritance rules;
access rights can be propagated from one object to the other.
A gacl may reference other gacls in its entries. The bene-
fit of the GACL approach is the ability to omit redundant
information but it may require the retrieval and evaluation
of more then one gacl. Specification of policy dependencies

with inheritance is error-prone and may result in circular de-
pendency of the policies and inconsistency may result.

More importantly, the expressive power of GACL is lim-
ited to that of ACL-based schemes and provides no sup-
port for capabilities and multi-level security systems. The
GACL model supports only system state-related conditions
within which rights are granted, such as current system load
and maximum number of copies of a program to be run con-
currently. This may not be sufficient for distributed applica-
tions. Our model allows fine-grained control over the con-
ditions.

Policy management issues were addressed by Blaze, et.
al. [9] with a claim that using PolicyMaker strengthens se-
curity. Because PolicyMaker credentials bind granted rights
to public keys, instead of identities, this eliminates one level
of indirection. Unfortunately, this binding complicates au-
thorization management, and as applied in cases where a
system uses X.509 or PGP certificates, this binding is depen-
dent on the application which translates credentials to the
PolicyMaker format.

Policies in the PolicyMaker format are easily expressed
in our framework. We treat security policies as a set of op-
erations that subjects are allowed to perform on the targeted
objects, and optional constraints are placed on the granted
operations. The basic question of access control is whether
a subject is allowed to perform a requested operation. The
GAA API provides a common interface for asking this ques-
tion. In contrast, to use PolicyMaker an application devel-
oper must define an application-specific language describ-
ing the requested operation. This language might not be
reusable across different application domains.

The related work described so far presents static policy
evaluation mechanisms. Decisions are based on a set of
policies and credentials presented at the time of the request.
In contrast, our framework allows dynamic policy evalua-
tion where credentials can be requested from the client or
from third parties during recursive evaluation of policies
within the API.

3 Overview of the Framework

Our framework is applied to distributed systems that span
multiple autonomous administrative domains without a cen-
tral management authority. Applications may impose their
own security policies and use different authentication ser-
vices, e.g. Kerberos, DCE or X.509 certificates. We assume
that within a distributed system, multiple independent appli-
cations coexist.

The individual security requirements of each application
are reflected in application-specific security policies. There
might exist common ACLs that apply to sets of applications.
Therefore, we designed a flexible and expressive mecha-
nism for representing and evaluating authorization policies.

70

It is general enough to support a variety of security mecha-
nisms based on public or secret key cryptosystems, and it is
usable by multiple applications supporting different opera-
tions and different kinds of protected objects.

The major components of the architecture are:

� Authentication mechanisms perform authentication of
users and supply credentials.

� A group server maintains group membership informa-
tion.

� The GAA API; Applications call GAA API routines
to check authorization against an authorization model.
The API routines obtain policies from local files, dis-
tributed authorization servers, and from credentials
provided by the user. They combine local and dis-
tributed authorization information under a single API
based on the requirements of the application and appli-
cable policies.

� Delegation is supported by delegation credentials, such
as restricted proxies [1], or through other delegation
methods.

3.1 Policy Language

The security policy associated with a protected resource
consists of a set of allowed operations, a set of approved
principals, and optional operation constraints. For exam-
ple, a system administrator can define the following security
policy to govern access to a printer: ”Joe Smith and mem-
bers of Department1 are allowed to print documents Mon-
day through Friday, from 9:00AM to 6:00PM”. This pol-
icy can be described by an ACL mechanism, where for each
resource, a list of valid entities is granted a set of access
rights. The same policy can be implemented using a capabil-
ity mechanism. However, to do so, traditional ACL and ca-
pability abstractions must be extended to allow conditional
restrictions on access rights. Therefore, in implementing a
policy, it should be possible to define:
1) access identity
2) grantor identity
3) a set of access rights
4) a set of conditions
The policy language represents a sequence of tokens. Each
token consists of:

� Token Type

Defines the type of the token. Tokens of the same type
have the same authorization semantics.

� Defining Authority

Indicates the authority responsible for defining the
value within the token type.

� Value

The value of the token. Its syntax and semantics are
determined by the token type. The name space for
the value is defined by the Defining Authority
field.

The rest of this section describes the user-level representa-
tion of the policy language tokens, which can be used to im-
plement both ACLs and capabilities. More precise syntax is
given in the Appendix.

3.1.1 Specification of Access Identity

The access identity represents an identity to be used for ac-
cess control purposes. The authorization framework sup-
ports the following types of access identity: USER, HOST,
APPLICATION, CA (Certification Authority), GROUP and
ANYBODY. Where ANYBODY represents any entity regard-
less of authentication. This may be useful for setting the de-
fault policies. The type of access identity is useful in deter-
mining which additional credentials are needed (see section
3.3). Principals can be aggregated into a single entry when
the same set of access rights and conditions applies to all of
them.

Our framework supports multiple existing principal nam-
ing methods. Different administrative domains might use
different authentication mechanisms, each having a par-
ticular syntax for specification of principals. Therefore,
Defining Authority for access identity indicates the
underlying authentication mechanism used to provide the
principal identity. Value represents the particular principal
identity.

3.1.2 Specification of Grantor Identity

The grantor identity represents an identity used to specify
the grantor of a capability or a delegated credential. Its
structure is similar to the one of the access identity described
in the previous subsection.

3.1.3 Specification of Access Rights

It must be possible to specify which principals or groups of
principals are authorized for specific operations, as well as
who is explicitly denied authorizations, therefore we define
positive and negative access rights.

All operations defined on the object are grouped by type
of access to the object they represent, and named using a tag.
For example, the following operations are defined for a file:

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read,write,execute

71

However, in a bank application, an object might be a cus-
tomer account, and the following set of operations might be
defined:

Token Type: pos access rights
Defining Authority: local manager
Value: ACCOUNT:deposit,withdraw,transfer

3.1.4 Specification of Conditions

Conditions specify the type-specific policies under which an
operation can be performed on an object. A condition is in-
terpreted according to its type. Conditions can be catego-
rized as generic or specific. Generic conditions are evalu-
ated within the access control API; specific conditions are
application-dependent and usually are evaluated by the ap-
plication. These are several of the more useful generic con-
ditions [1].

� time

Time periods for which access is granted.

� location

Location of the principal. Authorization is granted to
the principals residing on specific hosts, domains, or
networks.

� message protection

Required confidentiality/integrity message protection.
This condition specifies a level or mechanism that must
be used for confidentiality or integrity if access is to be
granted.

� privilege constraints

Specifies well-formed transactions and separation of
duty constraints. For more details see Section 8.

� multi-level security constraints

Specifies mandatory confidentiality and integrity con-
straints. For more information see Section 9.

� payment

Specifies a currency and an amount that must be paid
prior to accessing an object.

� quota

Specifies a currency and a limit. It limits the quantity
of a resource that can be consumed or obtained.

� strength of authentication

Specifies the authentication mechanism or set of suit-
able mechanisms, for authentication.

� trust constraints

Specifies restrictions placed on security credentials.
For more information see Section 6.

� attributes of subjects

Defines a set of attributes that must be possessed by
subjects in order to get access to the object, e.g. secu-
rity label.

If generic conditions are not sufficient for expressing
application-specific security policies, applications specify
their own conditions. Anything that can be expressed as
an alphanumeric string can be a condition. The application
must provide evaluation rules for the application-specific
conditions, or be prepared to evaluate the condition once the
authorization call completes.

3.1.5 Extended Access Control Lists (EACLs)

Extended Access Control Lists (EACLs) extend the conven-
tional ACL concept by allowing one to specify conditional
authorization policies. These are implemented as conditions
on authentication and authorization credentials. An EACL
is associated with an object and lists the subjects allowed to
access this object and the type of granted access. For ex-
ample, the following EACL implements policy stating that
anyone authenticated by Kerberos.V5 has read access to the
targeted resource and any member of group 15 connecting
from the USC.EDU domain has read and write access to the
object.

Token Type: access id ANYBODY
Defining Authority: none
Value: none

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read

Token Type: authentication mechanism
Defining Authority: system manager
Value: kerberos.V5

Token Type: access id GROUP
Defining Authority: DCE
Value: 15

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read FILE:write

Token Type: location
Defining Authority: system manager
Value: *.USC.EDU

72

The framework supports various strengths of user au-
thentication. A user may be granted a different set of rights,
depending on the strength of the authentication method used
for identification. Specification of weaker authentication
methods including network address or username will allow
the GAA API to be used with existing applications that do
not have support for strong authentication.

Objects that need to be protected include files, directo-
ries, network connections, hosts, and auxiliary devices, e.g.
printers and faxes. Our authorization mechanism supports
these different kinds of objects in a uniform manner. The
same EACL structure can be used to specify access policies
for different kinds of objects. Object names are drawn from
the application-specific name space and are opaque to the
authorization mechanism.

When a protected object is created, an EACL is associ-
ated with the object. The management of EACLs, including
giving authority to modify an EACL, is supported through
inclusion of entries specifying which principals are allowed
to modify the EACL. The control permissions comprise a
separate set of access rights named with the tag MANAGE-
MENT. To restrict the ability to pass the control permissions
to others a condition no delegation may be specified asso-
ciated with such entries.

3.1.6 Capabilities

Here we present an implementation of a capability. The ex-
ample states that the capability granted by the group admin
permits read access if the capability is presented during the
specified time period.

Token Type: grantor id GROUP
Defining Authority: kerberos.V5
Value: admin@USC.EDU

Token Type: pos access rights
Defining Authority: local manager
Value: FILE:read

Token Type: time window
Defining Authority: eastern timezone
Value: 8:00AM-5:00PM

3.2 EACL evaluation

The policy language we presented supports authorization
models based on the closed world model, when all rights are
implicitly denied. Authorizations are granted by an explicit
listing of positive access rights. Restrictions placed on pos-
itive access rights have the goal of restricting the granted
rights. The meaning of conditions on negative (denied) ac-
cess rights is unclear. We intend to investigate this issue,
however, for the time being, we require that:

1) A single EACL entry must not specify both positive
and negative rights.

2) If an EACL entry specifies negative rights, it must not
have any conditions. If both negative and positive autho-
rizations are allowed in individual or group entries, incon-
sistencies must be resolved according to resolution rules.
The design approach we adopted allows the ordered inter-
pretation [11] of EACLs. Evaluation of ordered EACL starts
from the first to the last in the list of EACL entries. The
resolution of inconsistent authorization is based on order-
ing. The authorizations that already have been examined
take precedence over new authorizations. Other interpreta-
tions were possible, but we found that for many such poli-
cies, resolution of inconsistencies was either NP-Complete
or undecidable.

There may be interactions when independent credentials
are used, e.g., one set of credentials causes denial, but the
other causes accept. A user may chose to withhold creden-
tials that it believes may result in a denial. The administra-
tor must deal with these issues by carefully setting policies
in an EACL. Conflicts may arise when more then one entry
applies. For example, one matching entry specifies individ-
ual subject (user, host or application), and another matching
entry specifies a certain group name. In this case, we would
require the entry for the individual subject to be placed be-
fore the entry for the group (assuming the policy expressed
for the individual subject entry is an exception to the policy
expressed for the group entry). When several EACL entries
with different conditions apply, entries for which conditions
are not satisfied will not affect the outcome of the authoriza-
tion function.

An ordered evaluation approach is easier to implement as
it allows only partial evaluation of an EACL and resolves
the authorization conflicts. The problem with this approach
is that it requires total ordering among authorizations. It
requires careful writing of the EACL by the security ad-
ministrator and is error-prone. An improper order of the
EACL entries may result in discrepancies between the in-
tended policy and the one that results from evaluation of the
EACL. It might be useful to have a separate module [4], [9],
that would help verify and debug the EACL to assure that it
expresses the desired policy.

3.3 Credential evaluation

Credentials are translated to the GAA API internal format
and placed into the GAA API security context. When evalu-
ating an EACL, the security context is searched for the nec-
essary credentials. Assume that file doc.txt has the following
EACL shown in Table 1. stored in the authorization data
base:

73

TOKEN TYPE

VALUE

IDENTITY

local_manager

pos_access_rights

ACCESS RIGHTS

TOKEN TYPE

VALUE

IDENTITY ACCESS RIGHTS

access_id_USER

KerberosV5

pos_access_rights

local_manager

TOKEN TYPE

VALUE

access_id_USER

IDENTITY ACCESS RIGHTS

KerberosV5

FILE : read

FILE : write

local_manager

pos_access_rights

FILE : read,write

KerberosV5

DEF. AUTHORITY

DEF. AUTHORITY

DEF. AUTHORITY

tom@ORG.EDU

admin@ORG.EDU

joe@ORG.EDU

access_id_GROUP

#3

#2

#1

Table 1.

Credentials may have optional conditions associated with
the granted rights. Assume the following credentials are
stored in the security context associated with the user Tom.

Identity credential:

access id USER kerberos.v5 tom@ORG.EDU
condition: time window pacific tzone 6am-7pm

Group membership credential:

access id GROUP kerberosV5 admin@ORG.EDU
condition: privilege:restricted

Delegation credential:

grantor: grantor id USER kerberosV5 joe@ORG.EDU
grantee: access id USER kerberosV5 tom@ORG.EDU
objects: doc.txt
rights: pos access rights local manager FILE:write
condition: location local manager *.org.edu

Let’s consider a request from a user Tom who is connect-
ing from the ORG.EDU domain to write to the file doc.txt at
5pm.

In evaluating the EACL, the first entry does not grant
the requested operation, however the second entry grants
it. The evaluation function will then check the security
context for the group admin membership credential. The
proper credential is found, however, there is a condition
privilege:restricted. This means that Tom can
use this privilege only if logged in as an administrator. Eval-
uation continues. The third entry grants the requested opera-
tion. The evaluation function will look for a delegation cre-
dential for tom@ORG.EDU issued by joe@ORG.EDU. The
appropriate delegation credential is found. The condition on
location*org.edu is satisfied, so the requested access will

be granted.

3.4 Generic Authorization and Access-control
API (GAA API)

In this section we provide a description of the main GAA
API routines.

3.4.1 GAA API functions

The gaa get object policy info function is called
to obtain the security policy associated with the object.

� Input:

– Reference to the object to be accessed. The
identifier for the object is from an application-
dependent name space, it can be represented as
unique object identifier, or symbolic name local
to the application.

– Pointer to application specific Authorization
Database.

– Upcall function for the retrieval of the object pol-
icy. The application maintains authorization in-
formation in a form understood by the applica-
tion. It can be stored in a file, database, directory
service or in some other way. The upcall function
provided for the GAA API retrieves this informa-
tion and translates it into the internal representa-
tion understood by the GAA API.

� Output:

– Object policy handle

The gaa check authorization function tells the
application server whether the requested operations are au-
thorized, or if additional application-specific checks are re-
quired.

� Input:

– Object policy handle, returned by
gaa get object policy info

– Principal’s security context (see section 3.5.1)

– Operations for authorization. This argument in-
dicates requested operations.

� Output:

– YES (indicating authorization) is returned if all
requested operations are authorized.

– NO (indicating denial of authorization) is returned
if at least one operation is not authorized.

74

– MAYBE (indicating a need for application-specific
checks) is returned if there are some unevaluated
conditions and additional application-specific
checks are needed, or if continuous evaluation of
conditions is required.

– detailed answer contains:� Authorization valid time period. The time
period during which the authoriza-
tion is granted is returned as condition to be
checked by the application.
Expiration time is calculated by the GAA
API, based on:
1. Time-related conditions in the object

policy, e.g. EACL matching entries.
2. Restrictions in the authentication and

authorization credentials.� The requested operations are returned
marked as granted or denied along with a list
of corresponding conditions, if any. Each
condition is marked as evaluated or not eval-
uated, and if evaluated marked as met, not
met or further evaluation or enforcement is
required. This tells the application which
policies must be enforced.� Information about additional security at-
tributes required. Additional credentials
might be required from clients to perform
certain operations, e.g. group membership
or delegated credentials.

� gaa inquire object policy info

This function allows the application to discover access
control policies associated with the targeted object ap-
plied to a particular principal. It returns a list of rights
that the principal is authorized for and corresponding
conditions, if any. The application must understand the
conditions that are returned unevaluated, or it must re-
ject the request. If understood, the application checks
the conditions against information about the request,
the target object, or environmental conditions to deter-
mine whether the conditions are met. Actual enforce-
ment of policies expressed through application specific
conditions is the responsibility of the application and is
outside of the scope of this paper.

3.4.2 GAA API Security Context

The security context is a GAA API data structure. It stores
information relevant to access control. Some of its con-
stituents are listed here:

Identity Verified authentication information, such as prin-
cipal ID for a particular security mechanism. To deter-
mine which entries apply, the GAA API checks if the

specified principal ID appears in an EACL entry that is
paired with a privilege for the type of access requested.

Authorization Attributes Verified authorization
credentials, such as group membership, group non-
membership, delegation credentials, and capabilities.

Evaluation and Retrieval Functions for Upcalls These
functions are called to evaluate application-specific
conditions, to request additional credentials, and to ver-
ify them.

4 Creation of the GAA API security context

Prior to calling the gaa check authorization
function, the application must obtain the authenticated prin-
cipal’s identity and store it in the security context. This
context may be constructed from credentials obtained from
different mechanisms, e.g. GSS API, Kerberos, or others.
This scenario places a heavy burden on the application pro-
grammer to provide the integration of the security mecha-
nism with the application. A second scenario is to obtain
the authentication credentials from a transport protocol that
already has the security context integrated with it. For ex-
ample, the application can call SSL or authenticated RPC.
In this case, it is the implementation of the transport mecha-
nism (usually written by someone other than the application
programmer) which calls the security API requesting prin-
cipal’s identity.

The principal’s authentication information is placed into
the security context and passed to the GAA API. When addi-
tional security attributes are required for the requested oper-
ation, the list of required attributes is returned to the applica-
tion, which may request them. Through the security context,
the application may provide the GAA API with an upcall
function for requesting required additional credentials. The
credentials pulled by the GAA API are verified and added to
the security context by the upcall function.

5 An Extended Example

To illustrate our approach we describe a simple Printer
Manager application, where protected objects are printers.
The Printer Manager accepts requests from users to access
printers and invokes the GAA API routines to make autho-
rization decisions, under the assumption that the administra-
tor of the resources has specified the local policy regarding
the use of the resources by means of EACL files. These files
are stored in an authorization database, maintained by the
Printer Manager.

75

5.1 Conditions

Administrators will be more willing to grant access to
the printers if they can restrict the access to the resources
to only users and organizations they trust. Further, the ad-
ministrators may need to specify time availability, restric-
tions on resources consumed by the clients and accounting
for the consumed resources. To specify these limits, the
Printer Manager uses generic conditions, such as time, loca-
tion, payment and quota. As an example of Printer Manager-
specific condition, consider printer load, expressed as max-
imum number of jobs that may be in the queue.

5.2 Authorization Walk-through

Here we present an authorization scenario to demonstrate
the use of the authorization framework for the case of print-
ing a document. Assume Kerberos V5 is used for principal
authentication. Assume that printer ps12a has the following
ordered EACL shown in Table 2. stored in the Printer Man-
ager authorization database.

TOKEN TYPE

VALUE

IDENTITY CONDITIONS

TOKEN TYPE

VALUE

IDENTITY ACCESS RIGHTS

positive_access_rights

TOKEN TYPE

VALUE

access_identity_USER

TOKEN TYPE

VALUE

#1

#2

#3

DEVICE : power_down

access_identity_GROUP

local_manager local_manager

20%6AM-8PM

KerberosV5

KerberosV5

KerberosV5

ACCESS RIGHTS

access_id_USER printer_load

PRINTER : submit_print_job

 pacific_tzone

time_window

local_managerlocal_manager

PRINTER : *

access_id_ANYBODY pos_access_rights

local_manager

ACCESS RIGHTS

DEF. AUTHORITY

DEF. AUTHORITY

DEF. AUTHORITY

DEF. AUTHORITY

joe@ORG.EDU

operator@ORG.EDU

tom@ORG.EDU

time_window

6AM-8PM

time_day

 pacific_tzonelocal_manager

sat-sunPRINTER:view_printer_capabilities

CONDITIONSIDENTITY

none

none

pos_access_rights

positive_access_rights

Table 2.

Let’s consider a request from user Tom who is connect-
ing from the ORG.EDU domain to print a document on the
printer ps12a at 7:30 PM.

When a client process running on behalf of the user con-
tacts the Printer Manager with the request
to submit print job to printer ps12a, the Printer Man-
ager first calls gaa get object policy info to ob-
tain a handle to the EACL of printer ps12a. The upcall func-
tion for retrieving the EACL for the specified object from the
Authorization Database system is passed to the GAA API
and is called bygaa get object policy info, which
returns the EACL handle.

The Printer Manager must place the principal’s authen-
ticated identity in the security context to pass into the
gaa check authorization function. This context
may be constructed according to the first or second scenario,
described in Section 8. If Tom is authenticated success-
fully, then verified identity credentials are placed into the

security context, specifying Tom as the Kerberos principal
tom@ORG.EDU.

Next, the Printer Manager calls the
gaa check authorization function. In evaluating
the EACL, the first entry applies. It grants the requested op-
eration, but there are two conditions that must be evaluated.

The first condition is generic and is evaluated directly by
the GAA API. Since, the request was issued at 7:30 PM this
condition is satisfied. The second condition is specific. If
the security context defined a condition evaluation function
for upcall, then this function is invoked and if this condi-
tion is met then the final answer is YES (authorized) and
detailed answer contains an authorization expiration time :
8PM (assume that authentication credential has expiration
time 9PM), allowed operation submit print job and
two conditions. Both conditions are marked as evaluated
and met. During the execution of the task the Printer Man-
ager is enforcing the limits imposed on the local resources
and authorization time.

If the corresponding upcall function was not passed to the
GAA API, the answer is MAYBE and the second condition is
marked as not evaluated and must be checked by the Printer
Manager.

When additional credentials are needed, if the security
context defines a credential retrieval function for the upcall,
it is invoked. If the requested credential is obtained, then the
final answer is YES. If the upcall function was not passed to
the GAA API, the answer is NO.

6 Integration with alternative authentication
mechanisms

Our model is designed for a system that spans multiple
administrative domains where each domain can impose its
own security policies. It is still necessary that a common au-
thentication mechanism be supported between two commu-
nicating systems. The model we present enables the syntac-
tic specification of multiple authentication policies and the
unambiguous identification of principals in each, but it does
not translate between heterogeneous authentication mecha-
nisms.

We have integrated our distributed model for authoriza-
tion with the Prospero Resource Manager (PRM), a meta-
computing resource allocation system developed at USC.
PRM uses Kerberos [2] to achieve strong authentication.
PRM uses calls to the Asynchronous Reliable Delivery Pro-
tocol (ARDP) [16], a communication protocol which han-
dles a set of security services, such as authentication, in-
tegrity and payment. ARDP calls the Kerberos library
through a security API, requesting the principal’s authenti-
cation information.

In addition, we have integrated the framework with the
Globus Security Infrastructure (GSI), a component of the

76

Globus metacomputing Toolkit [18]. GSI is implemented
on top of the GSS-API which allows the integration of dif-
ferent underlying security mechanisms. Currently, GSI im-
plementation uses SSL authentication protocol with X.509
certificates.

Public key authentication requires consideration of the
trustworthiness of the certifying authorities for the purpose
of public key certification. Authentication is not based on
the public key alone, since anybody can issue a valid certifi-
cate.

Certificates can comprise a chain, where each certificate
(except the last one) is followed by a certificate of its issuer.
Reliable authentication of a public key must be based on a
complete chain of certificates which starts at an end-entity
(e.g. user) certificate, includes zero or more Certification
Authorities (CA) certificates and ends at a self-signed root
certificate. A policy must be specified to validate the legiti-
macy of the received certificate chain and the authenticity of
the specified keys. The following is an example of an EACL
used for describing the Globus policy for what CAs are al-
lowed to sign which certificates. The Globus CA can sign
certificates for Globus or the Alliance. The Alliance CA can
sign certificates for the Alliance.

Token Type: access id CA
Defining Authority: X509
Value: /C=US/O=Globus/CN=Globus CA

Token Type: pos access rights
Defining Authority: globus
Value: CA:sign

Token Type: cond subjects
Defining Authority: globus
Value: /C=us/O=Globus/* /C=us/O=Alliance/*

7 Groups and Roles

A group is a convenient method to associate a name with
a set of subjects and to use this group name for access con-
trol purposes. The kind of subject (individual user, host, ap-
plication or other group) composing the group is opaque to
the authorization mechanism. A group server issues group
membership and non-membership certificates.

In general, a principal may be a member of several
groups. By default, a principal operates with the union of
privileges of all groups to which it belongs, as well as all of
his individual privileges.

Some applications adopt role-based access control. The
concept of roles is not consistent across different systems.
Several definitions of roles are present in the literature. In
general, a role is named collection of privileges needed to
perform specific tasks in the system. Role properties [4] in-
clude:

� A user can be a member of several roles

� Role can be activated and deactivated by users at their
discretion.

� Authorizations given to a role are applicable only when
that role is activated.

� There may be various constraints placed on the use of
roles, e.g. a user can activate just one role at a time.

Shandu et. al. [10] view roles as a policy and groups as
a mechanism for role implementation. We adopt this point
of view. In our framework we implement different flavors
of roles using the notion of group and a set of restrictions on
granted privileges. Consider a role-based policy, which as-
signs users: Tom, Joe, and Ken role Bank Teller. This
role allows a legitimate user to perform deposit and with-
draw operations on objects account 1 and account 2. This
policy may be easily expressed by our EACL framework:

1. Group Bank Teller is defined which will include
Tom, Joe, and Ken

2. The EACLs for objects account 1 and account 2 will
contain the following entry:

Token Type: access id GROUP
Defining Authority: X.509
Value: /C=US/O=Globus/CN=Bank Teller

Token Type: pos access rights
Defining Authority: pasific coast bank
Value: ACCOUNT:deposit,withdraw

In expressing role-based policy using groups, the issue of
constraints on role activation and use should be addressed.

8 Clark-Wilson

The Clark-Wilson model [12] was developed to address
security issues in commercial environments. The model
uses two categories of mechanisms to realize integrity: well-
formed transactions and separation of duty.

Our framework is designed to handle the Clark-Wilson
integrity model. A possible way to represent a constraint
that only certain trusted programs can modify objects is
using application:checksum condition, where the
checksum ensures authenticity of the application. An-
other way is using application:endorser condition,
which indicates that a valid certificate, stating that the appli-
cation has been endorsed by the specified endorser, must be
presented.

Static separation of duty is enforced by the security ad-
ministrator when assigning group membership. Dynamic

77

separation of duty enforces control over how permissions
are used at the access time [6]. Here are examples of EACL
conditions specific to the Dynamic separation of duty:

� privilege:restricted Makes subject operate
with the privilege of only one group at a time.

� privilege:set of groups Makes subject oper-
ate with the privilege of only specified groups at a time.

� endorsement:list of endorsers
Concurrence of several subjects to perform some op-
eration.

9 Lattice-based Policies

Our framework allows incorporation of Mandatory Con-
fidentiality [14], Mandatory Integrity [15] models and their
combination.

Mandatory policies govern access on the basis of classi-
fication of subjects and objects in the system. Objects and
subjects are assigned security labels:

1. Confidentiality labels, e.g. Top Secret/NASA, Sensi-
tive/Department2

2. Integrity labels, e.g. High integrity, Low integrity

3. Single security labels for both confidentiality and in-
tegrity, e.g. Top Secret/NASA, Unclassified. Assume
that the first label denotes high integrity level, whereas
the second one denotes low integrity level.

To prove eligibility to access an object, a subject has to
present a valid credential, stating subject’s security label.

All access rights are divided into read-class and write-
class. Appropriate rules are applied to each class.

Generic conditions for read-class access rights:
a) conf read equal:cofidentiality label
This condition specifies that a subject, wishing to get

read-class access to the object has to have security clearance
equal to the one, specified in the cofidentiality label field.

b) conf read below:cofidentiality label
This condition is used to enforce read down

mandatory confidentiality rule. It specifies that a sub-
ject, wishing to get read-class access to the object has to
have security clearance no less the one, specified in the
cofidentiality label field.

c) integr read equal:integrity label
This condition specifies that a subject, wishing to get

read-class access to the object has to have security clearance
equal to the one, specified in the integrity label field.

d) integr read above:integrity label
This condition is used to enforce read up mandatory

integrity rule. It specifies that a subject, wishing to get read-
class access to the object has to have integrity clearance less

or equal to the one, specified in the integrity label
field.

Similarly we define generic conditions for write-class
access rights. Assume file doc.txt has classification
Sensitive/Departmen1 and integrity label Medium, then
EACL for this file can be specified as:

TOKEN TYPE

VALUE

IDENTITY

#1

access_id_ANIBODY pos_access_rights conf_write_above

system_manager system_manager

system_manager

Sensitive/Deprt1

Sensitive/Deprt1

Medium

CONDITIONS

none

none

DEF. AUTHORITY

 integr_write_below

ACCESS RIGHTS

system_manager

FILE : write

pos_access_rights conf_read_below

system_manager

FILE : read

Table 3.

Note that in the example above, everybody in the dis-
tributed system can get read or write access to the file if
a valid credential stating the appropriate security label at-
tribute is presented. This poses a requirement that security
labels be unique across different security domains. This may
not be easily satisfied.

A possible way to restrict the scope of security labels to a
particular administrative domain is to specify an additional
condition such as location.

10 Conclusions

In this paper we presented a generic authorization mech-
anism that supports a variety of security mechanisms based
on public or secret key cryptography. The mechanism is
extensible across multiple applications supporting different
operations and different kinds of protected objects. Alter-
native implementations may be chosen for underling secu-
rity services that support the API. By extending the tradi-
tional ACLs and capabilities with conditions on authorized
rights we are able to support a flexible distributed autho-
rization mechanism, allowing applications and users to de-
fine their own access control policies either independently
or in conjunction with centralized authorization and group
servers. The problem of policy translation is addressed by
using generic or application-specific evaluation functions.
We are going to investigate the request and evaluation of ad-
ditional credentials. The assumption that all relevant cre-
dentials are passed for evaluation contradicts privacy re-
quirements. It might not be always desirable to reveal group
membership and principal attributes up front. We have inte-
grated our model with several applications.

11 Appendix

We use the Backus-Naur Form to denote the elements of
our policy language. Square brackets, [], denote optional
items and curly brackets, ��� , surround items that can repeat

78

zero or more times. A vertical line, |, separates alternatives.
Items inside double quotes are the terminal symbols.

An EACL is specified according to the following format:
eacl ::= 	 eacl entry

eacl entry ::=

access id 	 access id
 pos access rights 	 condition

	 pos access rights 	 condition
�
 |
access id 	 access id
 neg access rights

access id ::=
access id type def authority value

access id type ::=
”access id HOST” |
”access id USER” |
”access id GROUP” |
”access id CA” |
”access id APPLICATION” |
”access id ANYBODY”

A capability is defined according to the following format:

capability ::=
grantor id pos access rights 	 condition

	 pos access rights 	 condiction
�

grantor id ::=
grantor id type def authority value

grantor id type ::=
”grantor id HOST” |
”grantor id USER” |
”grantor id GROUP” |
”grantor id CA” |
”grantor id APPLICATION” |
”grantor id ANYBODY”

pos access rights ::=
”pos access rights” def authority value
	 ”pos access rights” def authority value

neg access rights ::=
”neg access rights” def authority value
	 ”neg access rights” def authority value

condition ::=
condition type def authority value

condition type ::= alphanumeric string

def authority ::= alphanumeric string

value ::= alphanumeric string

12 Acknowledgments

This research was supported in part by the Informa-
tion Technology Office of the Defense Advanced Research
Projects Agency (DoD) under the Scalable Computing In-
frastructure (SCOPE) Project, Contract No. DABT63-95-
C-0095, Security Infrastructure for Large Distributed Sys-
tems (SILDS) Project, Contract No. DABT63-94-C-0034,
Global Operating Systems Technology (GOST) Project,
Contract No. J-FBI-95-204, Diplomat, Project Depart-
ment of Energy Cooperative Agreement No. DE-FC03-
99ER25397 and by a grant from Xerox Corporation. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Intelligence Center and Fort Huachuca Directorate
of Contracting, the Defense Advanced Research Projects
Agency, the U.S. Government, or Xerox Corporation.

References

[1] C. Neuman. Proxy-based authorization and accounting for
distributed systems. Proceedings of the 13th International
Conference on Distributed Computing Systems, Pittsburgh,
May 1993.

[2] C. Neuman and T. Ts’o. Kerberos: An authentication ser-
vice for computer networks. IEEE Communications Maga-
zine, pages 33–38, September 1994.

[3] T. Y. C. Woo and S.S. Lam. Designing a Distributed Autho-
rization Service. In Procedings IEEE INFOCOM ’98, San
Francisco, March 1998.

[4] S. Jajodia, P. Samarati and V.S. Subrahmanian. A logical Lan-
guage for Expressing Authorizations. Proceedings of the 1997
IEEE Symposium on Security and Privacy, 1997.

[5] M. Abadi, M. Burrows, B. Lampson and G. Plotkin A calculus
for Access Control in Distributed Systems. ACM Transactions
on ProgrammingLanguages and Systems, Vol. 15, No 4, Pages
706-734, September 1993.

[6] R. T. Simon and M. E. Zurko Separation of Duty in Role-
Based Environments. Computer Security Foundations Work-
shop, June 1997.

[7] N. Nagaratnam and S. B. Byrne. Resource access control for
internet user agent. Proceedings of the third USENIX Confer-
ence on Object-Oriented Technologies and Systems, Portland,
Oregon, June 1997.

[8] L. Gong and R. Schemers. Implementing Protection Domains
in the Java Development Kit 1.2. Proceedings of Network and
Distributed System Security Symposium, San Diego, Califor-
nia, March 1998.

[9] M. Blaze, J. Feigenbaum and J. Lacy. Decentralized Trust
Management. in Proc. IEEE Symp. on Security and Privacy,
IEEE Computer Press, Los Angeles, pages 164-173, 1996.

[10] R. S. Shandhu, E. J. Coyne, et al Role-Based Access Control:
A Multi-Dimensional View. Proc. of 10th Annual Computer
Security Applications Conference, December 5-9, pages 54-
62, 1994.

 1994.

79

[11] W. Shen and P. Dewan Access Control for Collaborative En-
vironments. Proc. of CSCW, November, 1992, pages 51-58

[12] D. D. Clark and D. R. Wilson Non Discretionary Controls
Commercial Applications. Proc. of the IEEE Symposium on
Security and Privacy, pages 184-194, April 1997.

[13] S B. Lipner A Comparison of Commercial and Military Com-
puter Security Policies Proc. of the 1987 IEEE Symposium on
Security and Privacy, 1982.

[14] D. Elliott Bell and L. J. LaPadula Secure Computer Sys-
tem: Unified Exposition and Multics. Interpretation, ESD-TR-
75-306 (MTR-2997), The MITRE Corporation Bedford, Mas-
sachusetts, July 1975.

[15] K. J. Biba Integrity Considerations for Secure Computer Sys-
tems, The MITRE Corporation, Bedford, MA, MTR-3153, 30
June 1975.

[16] N. Salehi, K. Obraczka and C. Neuman The performance of
a reliable, request-response transport protocol. Proceedings of
the Fourth IEEE Symposium on Computers and Communica-
tions, 6-8 July, 1999.

[17] Edited by I. Foster and C. Kesselman.
The GRID: Blueprint for a New Computing Infrastructure
Morgan Kauffman Publishers, 1999.

[18] I. Foster and C. Kesselman. The GRID: Blueprint for a
New Computing Infrastructure. Morgan Kauffman Publish-
ers, 1999.

80

	paper5.pdf
	Introduction
	Related work
	Basic Conceptual Model
	Policy Elements
	Basic Definitions and Assumptions
	Time Dependency
	Changes in the Set Membership
	Policy Representation Issues

	Extended Conceptual Model
	Refinements
	Discussion of Condition Side-Effects

	Conclusions and Future Work
	Acknowledgments

